MCP HubMCP Hub
スキル一覧に戻る

grafana-dashboards

camoneart
更新日 Today
131 閲覧
2
2
GitHubで表示
メタdesign

について

このスキルにより、開発者は本番環境対応のGrafanaダッシュボードを作成・管理し、リアルタイムの監視とオブザーバビリティを実現できます。Prometheusなどのソースからシステムメトリクス、アプリケーションパフォーマンス、ビジネスKPIを可視化するのに役立ちます。運用ダッシュボードの構築、SLO監視の実装、インフラ健全性の追跡などの際にご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/camoneart/claude-code
Git クローン代替
git clone https://github.com/camoneart/claude-code.git ~/.claude/skills/grafana-dashboards

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Grafana Dashboards

Create and manage production-ready Grafana dashboards for comprehensive system observability.

Purpose

Design effective Grafana dashboards for monitoring applications, infrastructure, and business metrics.

When to Use

  • Visualize Prometheus metrics
  • Create custom dashboards
  • Implement SLO dashboards
  • Monitor infrastructure
  • Track business KPIs

Dashboard Design Principles

1. Hierarchy of Information

┌─────────────────────────────────────┐
│  Critical Metrics (Big Numbers)     │
├─────────────────────────────────────┤
│  Key Trends (Time Series)           │
├─────────────────────────────────────┤
│  Detailed Metrics (Tables/Heatmaps) │
└─────────────────────────────────────┘

2. RED Method (Services)

  • Rate - Requests per second
  • Errors - Error rate
  • Duration - Latency/response time

3. USE Method (Resources)

  • Utilization - % time resource is busy
  • Saturation - Queue length/wait time
  • Errors - Error count

Dashboard Structure

API Monitoring Dashboard

{
  "dashboard": {
    "title": "API Monitoring",
    "tags": ["api", "production"],
    "timezone": "browser",
    "refresh": "30s",
    "panels": [
      {
        "title": "Request Rate",
        "type": "graph",
        "targets": [
          {
            "expr": "sum(rate(http_requests_total[5m])) by (service)",
            "legendFormat": "{{service}}"
          }
        ],
        "gridPos": {"x": 0, "y": 0, "w": 12, "h": 8}
      },
      {
        "title": "Error Rate %",
        "type": "graph",
        "targets": [
          {
            "expr": "(sum(rate(http_requests_total{status=~\"5..\"}[5m])) / sum(rate(http_requests_total[5m]))) * 100",
            "legendFormat": "Error Rate"
          }
        ],
        "alert": {
          "conditions": [
            {
              "evaluator": {"params": [5], "type": "gt"},
              "operator": {"type": "and"},
              "query": {"params": ["A", "5m", "now"]},
              "type": "query"
            }
          ]
        },
        "gridPos": {"x": 12, "y": 0, "w": 12, "h": 8}
      },
      {
        "title": "P95 Latency",
        "type": "graph",
        "targets": [
          {
            "expr": "histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket[5m])) by (le, service))",
            "legendFormat": "{{service}}"
          }
        ],
        "gridPos": {"x": 0, "y": 8, "w": 24, "h": 8}
      }
    ]
  }
}

Reference: See assets/api-dashboard.json

Panel Types

1. Stat Panel (Single Value)

{
  "type": "stat",
  "title": "Total Requests",
  "targets": [{
    "expr": "sum(http_requests_total)"
  }],
  "options": {
    "reduceOptions": {
      "values": false,
      "calcs": ["lastNotNull"]
    },
    "orientation": "auto",
    "textMode": "auto",
    "colorMode": "value"
  },
  "fieldConfig": {
    "defaults": {
      "thresholds": {
        "mode": "absolute",
        "steps": [
          {"value": 0, "color": "green"},
          {"value": 80, "color": "yellow"},
          {"value": 90, "color": "red"}
        ]
      }
    }
  }
}

2. Time Series Graph

{
  "type": "graph",
  "title": "CPU Usage",
  "targets": [{
    "expr": "100 - (avg by (instance) (rate(node_cpu_seconds_total{mode=\"idle\"}[5m])) * 100)"
  }],
  "yaxes": [
    {"format": "percent", "max": 100, "min": 0},
    {"format": "short"}
  ]
}

3. Table Panel

{
  "type": "table",
  "title": "Service Status",
  "targets": [{
    "expr": "up",
    "format": "table",
    "instant": true
  }],
  "transformations": [
    {
      "id": "organize",
      "options": {
        "excludeByName": {"Time": true},
        "indexByName": {},
        "renameByName": {
          "instance": "Instance",
          "job": "Service",
          "Value": "Status"
        }
      }
    }
  ]
}

4. Heatmap

{
  "type": "heatmap",
  "title": "Latency Heatmap",
  "targets": [{
    "expr": "sum(rate(http_request_duration_seconds_bucket[5m])) by (le)",
    "format": "heatmap"
  }],
  "dataFormat": "tsbuckets",
  "yAxis": {
    "format": "s"
  }
}

Variables

Query Variables

{
  "templating": {
    "list": [
      {
        "name": "namespace",
        "type": "query",
        "datasource": "Prometheus",
        "query": "label_values(kube_pod_info, namespace)",
        "refresh": 1,
        "multi": false
      },
      {
        "name": "service",
        "type": "query",
        "datasource": "Prometheus",
        "query": "label_values(kube_service_info{namespace=\"$namespace\"}, service)",
        "refresh": 1,
        "multi": true
      }
    ]
  }
}

Use Variables in Queries

sum(rate(http_requests_total{namespace="$namespace", service=~"$service"}[5m]))

Alerts in Dashboards

{
  "alert": {
    "name": "High Error Rate",
    "conditions": [
      {
        "evaluator": {
          "params": [5],
          "type": "gt"
        },
        "operator": {"type": "and"},
        "query": {
          "params": ["A", "5m", "now"]
        },
        "reducer": {"type": "avg"},
        "type": "query"
      }
    ],
    "executionErrorState": "alerting",
    "for": "5m",
    "frequency": "1m",
    "message": "Error rate is above 5%",
    "noDataState": "no_data",
    "notifications": [
      {"uid": "slack-channel"}
    ]
  }
}

Dashboard Provisioning

dashboards.yml:

apiVersion: 1

providers:
  - name: 'default'
    orgId: 1
    folder: 'General'
    type: file
    disableDeletion: false
    updateIntervalSeconds: 10
    allowUiUpdates: true
    options:
      path: /etc/grafana/dashboards

Common Dashboard Patterns

Infrastructure Dashboard

Key Panels:

  • CPU utilization per node
  • Memory usage per node
  • Disk I/O
  • Network traffic
  • Pod count by namespace
  • Node status

Reference: See assets/infrastructure-dashboard.json

Database Dashboard

Key Panels:

  • Queries per second
  • Connection pool usage
  • Query latency (P50, P95, P99)
  • Active connections
  • Database size
  • Replication lag
  • Slow queries

Reference: See assets/database-dashboard.json

Application Dashboard

Key Panels:

  • Request rate
  • Error rate
  • Response time (percentiles)
  • Active users/sessions
  • Cache hit rate
  • Queue length

Best Practices

  1. Start with templates (Grafana community dashboards)
  2. Use consistent naming for panels and variables
  3. Group related metrics in rows
  4. Set appropriate time ranges (default: Last 6 hours)
  5. Use variables for flexibility
  6. Add panel descriptions for context
  7. Configure units correctly
  8. Set meaningful thresholds for colors
  9. Use consistent colors across dashboards
  10. Test with different time ranges

Dashboard as Code

Terraform Provisioning

resource "grafana_dashboard" "api_monitoring" {
  config_json = file("${path.module}/dashboards/api-monitoring.json")
  folder      = grafana_folder.monitoring.id
}

resource "grafana_folder" "monitoring" {
  title = "Production Monitoring"
}

Ansible Provisioning

- name: Deploy Grafana dashboards
  copy:
    src: "{{ item }}"
    dest: /etc/grafana/dashboards/
  with_fileglob:
    - "dashboards/*.json"
  notify: restart grafana

Reference Files

  • assets/api-dashboard.json - API monitoring dashboard
  • assets/infrastructure-dashboard.json - Infrastructure dashboard
  • assets/database-dashboard.json - Database monitoring dashboard
  • references/dashboard-design.md - Dashboard design guide

Related Skills

  • prometheus-configuration - For metric collection
  • slo-implementation - For SLO dashboards

GitHub リポジトリ

camoneart/claude-code
パス: skills/grafana-dashboards

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る