grafana-dashboards
について
このスキルにより、開発者は本番環境対応のGrafanaダッシュボードを作成・管理し、リアルタイムの監視とオブザーバビリティを実現できます。Prometheusなどのソースからシステムメトリクス、アプリケーションパフォーマンス、ビジネスKPIを可視化するのに役立ちます。運用ダッシュボードの構築、SLO監視の実装、インフラ健全性の追跡などの際にご利用ください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/camoneart/claude-codegit clone https://github.com/camoneart/claude-code.git ~/.claude/skills/grafana-dashboardsこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Grafana Dashboards
Create and manage production-ready Grafana dashboards for comprehensive system observability.
Purpose
Design effective Grafana dashboards for monitoring applications, infrastructure, and business metrics.
When to Use
- Visualize Prometheus metrics
- Create custom dashboards
- Implement SLO dashboards
- Monitor infrastructure
- Track business KPIs
Dashboard Design Principles
1. Hierarchy of Information
┌─────────────────────────────────────┐
│ Critical Metrics (Big Numbers) │
├─────────────────────────────────────┤
│ Key Trends (Time Series) │
├─────────────────────────────────────┤
│ Detailed Metrics (Tables/Heatmaps) │
└─────────────────────────────────────┘
2. RED Method (Services)
- Rate - Requests per second
- Errors - Error rate
- Duration - Latency/response time
3. USE Method (Resources)
- Utilization - % time resource is busy
- Saturation - Queue length/wait time
- Errors - Error count
Dashboard Structure
API Monitoring Dashboard
{
"dashboard": {
"title": "API Monitoring",
"tags": ["api", "production"],
"timezone": "browser",
"refresh": "30s",
"panels": [
{
"title": "Request Rate",
"type": "graph",
"targets": [
{
"expr": "sum(rate(http_requests_total[5m])) by (service)",
"legendFormat": "{{service}}"
}
],
"gridPos": {"x": 0, "y": 0, "w": 12, "h": 8}
},
{
"title": "Error Rate %",
"type": "graph",
"targets": [
{
"expr": "(sum(rate(http_requests_total{status=~\"5..\"}[5m])) / sum(rate(http_requests_total[5m]))) * 100",
"legendFormat": "Error Rate"
}
],
"alert": {
"conditions": [
{
"evaluator": {"params": [5], "type": "gt"},
"operator": {"type": "and"},
"query": {"params": ["A", "5m", "now"]},
"type": "query"
}
]
},
"gridPos": {"x": 12, "y": 0, "w": 12, "h": 8}
},
{
"title": "P95 Latency",
"type": "graph",
"targets": [
{
"expr": "histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket[5m])) by (le, service))",
"legendFormat": "{{service}}"
}
],
"gridPos": {"x": 0, "y": 8, "w": 24, "h": 8}
}
]
}
}
Reference: See assets/api-dashboard.json
Panel Types
1. Stat Panel (Single Value)
{
"type": "stat",
"title": "Total Requests",
"targets": [{
"expr": "sum(http_requests_total)"
}],
"options": {
"reduceOptions": {
"values": false,
"calcs": ["lastNotNull"]
},
"orientation": "auto",
"textMode": "auto",
"colorMode": "value"
},
"fieldConfig": {
"defaults": {
"thresholds": {
"mode": "absolute",
"steps": [
{"value": 0, "color": "green"},
{"value": 80, "color": "yellow"},
{"value": 90, "color": "red"}
]
}
}
}
}
2. Time Series Graph
{
"type": "graph",
"title": "CPU Usage",
"targets": [{
"expr": "100 - (avg by (instance) (rate(node_cpu_seconds_total{mode=\"idle\"}[5m])) * 100)"
}],
"yaxes": [
{"format": "percent", "max": 100, "min": 0},
{"format": "short"}
]
}
3. Table Panel
{
"type": "table",
"title": "Service Status",
"targets": [{
"expr": "up",
"format": "table",
"instant": true
}],
"transformations": [
{
"id": "organize",
"options": {
"excludeByName": {"Time": true},
"indexByName": {},
"renameByName": {
"instance": "Instance",
"job": "Service",
"Value": "Status"
}
}
}
]
}
4. Heatmap
{
"type": "heatmap",
"title": "Latency Heatmap",
"targets": [{
"expr": "sum(rate(http_request_duration_seconds_bucket[5m])) by (le)",
"format": "heatmap"
}],
"dataFormat": "tsbuckets",
"yAxis": {
"format": "s"
}
}
Variables
Query Variables
{
"templating": {
"list": [
{
"name": "namespace",
"type": "query",
"datasource": "Prometheus",
"query": "label_values(kube_pod_info, namespace)",
"refresh": 1,
"multi": false
},
{
"name": "service",
"type": "query",
"datasource": "Prometheus",
"query": "label_values(kube_service_info{namespace=\"$namespace\"}, service)",
"refresh": 1,
"multi": true
}
]
}
}
Use Variables in Queries
sum(rate(http_requests_total{namespace="$namespace", service=~"$service"}[5m]))
Alerts in Dashboards
{
"alert": {
"name": "High Error Rate",
"conditions": [
{
"evaluator": {
"params": [5],
"type": "gt"
},
"operator": {"type": "and"},
"query": {
"params": ["A", "5m", "now"]
},
"reducer": {"type": "avg"},
"type": "query"
}
],
"executionErrorState": "alerting",
"for": "5m",
"frequency": "1m",
"message": "Error rate is above 5%",
"noDataState": "no_data",
"notifications": [
{"uid": "slack-channel"}
]
}
}
Dashboard Provisioning
dashboards.yml:
apiVersion: 1
providers:
- name: 'default'
orgId: 1
folder: 'General'
type: file
disableDeletion: false
updateIntervalSeconds: 10
allowUiUpdates: true
options:
path: /etc/grafana/dashboards
Common Dashboard Patterns
Infrastructure Dashboard
Key Panels:
- CPU utilization per node
- Memory usage per node
- Disk I/O
- Network traffic
- Pod count by namespace
- Node status
Reference: See assets/infrastructure-dashboard.json
Database Dashboard
Key Panels:
- Queries per second
- Connection pool usage
- Query latency (P50, P95, P99)
- Active connections
- Database size
- Replication lag
- Slow queries
Reference: See assets/database-dashboard.json
Application Dashboard
Key Panels:
- Request rate
- Error rate
- Response time (percentiles)
- Active users/sessions
- Cache hit rate
- Queue length
Best Practices
- Start with templates (Grafana community dashboards)
- Use consistent naming for panels and variables
- Group related metrics in rows
- Set appropriate time ranges (default: Last 6 hours)
- Use variables for flexibility
- Add panel descriptions for context
- Configure units correctly
- Set meaningful thresholds for colors
- Use consistent colors across dashboards
- Test with different time ranges
Dashboard as Code
Terraform Provisioning
resource "grafana_dashboard" "api_monitoring" {
config_json = file("${path.module}/dashboards/api-monitoring.json")
folder = grafana_folder.monitoring.id
}
resource "grafana_folder" "monitoring" {
title = "Production Monitoring"
}
Ansible Provisioning
- name: Deploy Grafana dashboards
copy:
src: "{{ item }}"
dest: /etc/grafana/dashboards/
with_fileglob:
- "dashboards/*.json"
notify: restart grafana
Reference Files
assets/api-dashboard.json- API monitoring dashboardassets/infrastructure-dashboard.json- Infrastructure dashboardassets/database-dashboard.json- Database monitoring dashboardreferences/dashboard-design.md- Dashboard design guide
Related Skills
prometheus-configuration- For metric collectionslo-implementation- For SLO dashboards
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
polymarket
メタThis skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
