MCP HubMCP Hub
スキル一覧に戻る

context-synthesis

majiayu000
更新日 Today
23 閲覧
58
9
58
GitHubで表示
メタmcpdesign

について

コンテキスト統合スキルは、メモリ、ドキュメント、ウェブなどの複数ソースから効率的に情報を収集・統合するため、並列MCPツール呼び出しを調整します。トークン使用量を最小化しつつ、無関係な結果をフィルタリングし、構造化された要約を提供するため、調査・研究・分析タスクの開始に最適です。開発者は、ステークホルダーインタビュー前の包括的コンテキスト構築や新領域の分析時に本スキルを活用すべきです。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/context-synthesis

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Context Synthesis

Efficient multi-source context gathering that minimizes token usage while maximizing relevant information.

When to Use

  • Starting stakeholder discovery/interviews
  • Researching new features or domains
  • Building context for analysis tasks
  • Synthesizing information from multiple sources

Core Principle

Gather silently, synthesize briefly, share relevantly.

Token efficiency comes from:

  1. Parallel MCP tool calls (not sequential)
  2. Filtering irrelevant results before presenting
  3. Structured summaries over raw dumps

Context Gathering Pattern

Step 1: Parallel Information Retrieval

Execute these in parallel (single tool call block):

# All four in parallel - not sequential
mcp__plugin_claude-mem_mem-search__search(query="{keyword}")
mcp__serena__list_memories()
Glob(pattern="**/features/*_FEATURE.md")
WebSearch(query="{domain} best practices 2025")

Step 2: Selective Deep Reads

Based on Step 1 results, read only high-relevance items:

# Only if memory mentions relevant topic
mcp__serena__read_memory(memory_file_name="relevant_memory")

# Only if glob found matching specs
Read(file_path="/path/to/relevant/*_FEATURE.md")

# Only if search returned actionable results
WebFetch(url="most_relevant_url", prompt="extract specific info")

Step 3: Structured Synthesis

Present findings in structured format:

**Context Summary** ({feature/topic})

| Source | Key Finding | Relevance |
|--------|-------------|-----------|
| Memory | Past decision X | Direct |
| Spec FEATURE_A | Similar pattern Y | Reference |
| Web | Industry trend Z | Background |

**Implications for Current Task:**
- [Key implication 1]
- [Key implication 2]

Source Priority Order

PrioritySourceWhen to UseToken Cost
1claude-memAlways firstLow
2serena memoriesProject contextLow
3Existing specsPattern referenceMedium
4WebSearchIndustry contextMedium
5WebFetchDeep dive neededHigh

Anti-Patterns

Anti-PatternProblemBetter Approach
Sequential tool callsSlow, inefficientParallel execution
Reading all filesToken wasteSelective deep reads
Dumping raw resultsCognitive overloadStructured synthesis
Skipping memory checkMiss past decisionsAlways check first
WebFetch everythingHigh token costOnly for high-value URLs

Integration with Other Skills

With requirements-discovery

1. context-synthesis gathers background
2. requirements-discovery conducts interview
3. Context informs question prioritization

With architecture

1. context-synthesis gathers existing patterns
2. architecture analyzes against patterns
3. Context validates decisions

Quick Reference

# Minimal context check (fast)
mcp__plugin_claude-mem_mem-search__search(query="{topic}")
mcp__serena__list_memories()

# Standard context gathering (balanced)
# Add: Glob for existing specs, WebSearch for trends

# Deep context research (comprehensive)
# Add: WebFetch for detailed sources, multiple memory reads

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/context-synthesis

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る