context-synthesis
について
コンテキスト統合スキルは、メモリ、ドキュメント、ウェブなどの複数ソースから効率的に情報を収集・統合するため、並列MCPツール呼び出しを調整します。トークン使用量を最小化しつつ、無関係な結果をフィルタリングし、構造化された要約を提供するため、調査・研究・分析タスクの開始に最適です。開発者は、ステークホルダーインタビュー前の包括的コンテキスト構築や新領域の分析時に本スキルを活用すべきです。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/context-synthesisこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Context Synthesis
Efficient multi-source context gathering that minimizes token usage while maximizing relevant information.
When to Use
- Starting stakeholder discovery/interviews
- Researching new features or domains
- Building context for analysis tasks
- Synthesizing information from multiple sources
Core Principle
Gather silently, synthesize briefly, share relevantly.
Token efficiency comes from:
- Parallel MCP tool calls (not sequential)
- Filtering irrelevant results before presenting
- Structured summaries over raw dumps
Context Gathering Pattern
Step 1: Parallel Information Retrieval
Execute these in parallel (single tool call block):
# All four in parallel - not sequential
mcp__plugin_claude-mem_mem-search__search(query="{keyword}")
mcp__serena__list_memories()
Glob(pattern="**/features/*_FEATURE.md")
WebSearch(query="{domain} best practices 2025")
Step 2: Selective Deep Reads
Based on Step 1 results, read only high-relevance items:
# Only if memory mentions relevant topic
mcp__serena__read_memory(memory_file_name="relevant_memory")
# Only if glob found matching specs
Read(file_path="/path/to/relevant/*_FEATURE.md")
# Only if search returned actionable results
WebFetch(url="most_relevant_url", prompt="extract specific info")
Step 3: Structured Synthesis
Present findings in structured format:
**Context Summary** ({feature/topic})
| Source | Key Finding | Relevance |
|--------|-------------|-----------|
| Memory | Past decision X | Direct |
| Spec FEATURE_A | Similar pattern Y | Reference |
| Web | Industry trend Z | Background |
**Implications for Current Task:**
- [Key implication 1]
- [Key implication 2]
Source Priority Order
| Priority | Source | When to Use | Token Cost |
|---|---|---|---|
| 1 | claude-mem | Always first | Low |
| 2 | serena memories | Project context | Low |
| 3 | Existing specs | Pattern reference | Medium |
| 4 | WebSearch | Industry context | Medium |
| 5 | WebFetch | Deep dive needed | High |
Anti-Patterns
| Anti-Pattern | Problem | Better Approach |
|---|---|---|
| Sequential tool calls | Slow, inefficient | Parallel execution |
| Reading all files | Token waste | Selective deep reads |
| Dumping raw results | Cognitive overload | Structured synthesis |
| Skipping memory check | Miss past decisions | Always check first |
| WebFetch everything | High token cost | Only for high-value URLs |
Integration with Other Skills
With requirements-discovery
1. context-synthesis gathers background
2. requirements-discovery conducts interview
3. Context informs question prioritization
With architecture
1. context-synthesis gathers existing patterns
2. architecture analyzes against patterns
3. Context validates decisions
Quick Reference
# Minimal context check (fast)
mcp__plugin_claude-mem_mem-search__search(query="{topic}")
mcp__serena__list_memories()
# Standard context gathering (balanced)
# Add: Glob for existing specs, WebSearch for trends
# Deep context research (comprehensive)
# Add: WebFetch for detailed sources, multiple memory reads
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
polymarket
メタThis skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.
langchain
メタLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
