MCP HubMCP Hub
スキル一覧に戻る

corpus-review

majiayu000
更新日 Today
20 閲覧
58
9
58
GitHubで表示
メタaidata

について

このスキルは、市場データに対してあなたの履歴書コーパスを分析し、あなたのプロファイルにおける需要の高いスキルギャップを特定します。次に、不足している経験を探り、戦略的な改善点を加えてコーパスを更新します。データ駆動型のキャリアレビューに活用し、あなたの技術キャリアのストーリーを強化しましょう。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/corpus-review

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Corpus Review Workflow

Load and execute: workflows/corpus-review/workflow.md

Read the entire workflow file and execute it step by step. This workflow:

  1. Loads your Resume Corpus and market skills data.
  2. Analyzes your accomplishments against real-world market demand.
  3. Identifies strategic gaps (high-demand skills you lack evidence for).
  4. Probes for experiences to close those gaps.
  5. Updates corpus with improvements and new entries.

Follow all steps exactly as written. Embody Max's critical stance to provide a data-driven, strategic career review.

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/corpus-review

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る