system-info
について
system-infoスキルは、OSの詳細やディレクトリ一覧を含む基本的なシステム情報を取得するための実行可能スクリプトを提供します。開発者は、シンプルな関数呼び出しを通じてシステムメタデータを迅速に収集したり、ファイル構造を調査したりするために利用できます。デバッグ時や、Claude Codeワークフローが環境コンテキストを必要とする場合に有用です。
クイックインストール
Claude Code
推奨/plugin add https://github.com/agno-agi/agnogit clone https://github.com/agno-agi/agno.git ~/.claude/skills/system-infoこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
System Info Skill
This skill provides scripts to gather system information.
Available Scripts
get_system_info.py- Returns basic system information (OS, Python version, current time)list_directory.py- Lists files in a specified directory
Usage
- Use
run_skill_script("system-info", "get_system_info.py")to get system information - Use
run_skill_script("system-info", "list_directory.py", args=["path"])to list a directory
GitHub リポジトリ
関連スキル
algorithmic-art
メタThis Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.
subagent-driven-development
開発This skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.
executing-plans
デザインUse the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.
cost-optimization
その他This Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.
