cost-optimization
について
コスト最適化スキルは、リソースの適正サイジング、タグ付け、支出分析などの戦略を実施することで、開発者がクラウド支出を削減することを支援します。AWS、Azure、GCPにわたるコストガバナンスのための具体的な手順を提供します。インフラストラクチャコストの分析やクラウド経費の最適化が必要な際に、このスキルをご利用ください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/cost-optimizationこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Cloud Cost Optimization
Strategies and patterns for optimizing cloud costs across AWS, Azure, and GCP.
Do not use this skill when
- The task is unrelated to cloud cost optimization
- You need a different domain or tool outside this scope
Instructions
- Clarify goals, constraints, and required inputs.
- Apply relevant best practices and validate outcomes.
- Provide actionable steps and verification.
- If detailed examples are required, open
resources/implementation-playbook.md.
Purpose
Implement systematic cost optimization strategies to reduce cloud spending while maintaining performance and reliability.
Use this skill when
- Reduce cloud spending
- Right-size resources
- Implement cost governance
- Optimize multi-cloud costs
- Meet budget constraints
Cost Optimization Framework
1. Visibility
- Implement cost allocation tags
- Use cloud cost management tools
- Set up budget alerts
- Create cost dashboards
2. Right-Sizing
- Analyze resource utilization
- Downsize over-provisioned resources
- Use auto-scaling
- Remove idle resources
3. Pricing Models
- Use reserved capacity
- Leverage spot/preemptible instances
- Implement savings plans
- Use committed use discounts
4. Architecture Optimization
- Use managed services
- Implement caching
- Optimize data transfer
- Use lifecycle policies
AWS Cost Optimization
Reserved Instances
Savings: 30-72% vs On-Demand
Term: 1 or 3 years
Payment: All/Partial/No upfront
Flexibility: Standard or Convertible
Savings Plans
Compute Savings Plans: 66% savings
EC2 Instance Savings Plans: 72% savings
Applies to: EC2, Fargate, Lambda
Flexible across: Instance families, regions, OS
Spot Instances
Savings: Up to 90% vs On-Demand
Best for: Batch jobs, CI/CD, stateless workloads
Risk: 2-minute interruption notice
Strategy: Mix with On-Demand for resilience
S3 Cost Optimization
resource "aws_s3_bucket_lifecycle_configuration" "example" {
bucket = aws_s3_bucket.example.id
rule {
id = "transition-to-ia"
status = "Enabled"
transition {
days = 30
storage_class = "STANDARD_IA"
}
transition {
days = 90
storage_class = "GLACIER"
}
expiration {
days = 365
}
}
}
Azure Cost Optimization
Reserved VM Instances
- 1 or 3 year terms
- Up to 72% savings
- Flexible sizing
- Exchangeable
Azure Hybrid Benefit
- Use existing Windows Server licenses
- Up to 80% savings with RI
- Available for Windows and SQL Server
Azure Advisor Recommendations
- Right-size VMs
- Delete unused resources
- Use reserved capacity
- Optimize storage
GCP Cost Optimization
Committed Use Discounts
- 1 or 3 year commitment
- Up to 57% savings
- Applies to vCPUs and memory
- Resource-based or spend-based
Sustained Use Discounts
- Automatic discounts
- Up to 30% for running instances
- No commitment required
- Applies to Compute Engine, GKE
Preemptible VMs
- Up to 80% savings
- 24-hour maximum runtime
- Best for batch workloads
Tagging Strategy
AWS Tagging
locals {
common_tags = {
Environment = "production"
Project = "my-project"
CostCenter = "engineering"
Owner = "[email protected]"
ManagedBy = "terraform"
}
}
resource "aws_instance" "example" {
ami = "ami-12345678"
instance_type = "t3.medium"
tags = merge(
local.common_tags,
{
Name = "web-server"
}
)
}
Reference: See references/tagging-standards.md
Cost Monitoring
Budget Alerts
# AWS Budget
resource "aws_budgets_budget" "monthly" {
name = "monthly-budget"
budget_type = "COST"
limit_amount = "1000"
limit_unit = "USD"
time_period_start = "2024-01-01_00:00"
time_unit = "MONTHLY"
notification {
comparison_operator = "GREATER_THAN"
threshold = 80
threshold_type = "PERCENTAGE"
notification_type = "ACTUAL"
subscriber_email_addresses = ["[email protected]"]
}
}
Cost Anomaly Detection
- AWS Cost Anomaly Detection
- Azure Cost Management alerts
- GCP Budget alerts
Architecture Patterns
Pattern 1: Serverless First
- Use Lambda/Functions for event-driven
- Pay only for execution time
- Auto-scaling included
- No idle costs
Pattern 2: Right-Sized Databases
Development: t3.small RDS
Staging: t3.large RDS
Production: r6g.2xlarge RDS with read replicas
Pattern 3: Multi-Tier Storage
Hot data: S3 Standard
Warm data: S3 Standard-IA (30 days)
Cold data: S3 Glacier (90 days)
Archive: S3 Deep Archive (365 days)
Pattern 4: Auto-Scaling
resource "aws_autoscaling_policy" "scale_up" {
name = "scale-up"
scaling_adjustment = 2
adjustment_type = "ChangeInCapacity"
cooldown = 300
autoscaling_group_name = aws_autoscaling_group.main.name
}
resource "aws_cloudwatch_metric_alarm" "cpu_high" {
alarm_name = "cpu-high"
comparison_operator = "GreaterThanThreshold"
evaluation_periods = "2"
metric_name = "CPUUtilization"
namespace = "AWS/EC2"
period = "60"
statistic = "Average"
threshold = "80"
alarm_actions = [aws_autoscaling_policy.scale_up.arn]
}
Cost Optimization Checklist
- Implement cost allocation tags
- Delete unused resources (EBS, EIPs, snapshots)
- Right-size instances based on utilization
- Use reserved capacity for steady workloads
- Implement auto-scaling
- Optimize storage classes
- Use lifecycle policies
- Enable cost anomaly detection
- Set budget alerts
- Review costs weekly
- Use spot/preemptible instances
- Optimize data transfer costs
- Implement caching layers
- Use managed services
- Monitor and optimize continuously
Tools
- AWS: Cost Explorer, Cost Anomaly Detection, Compute Optimizer
- Azure: Cost Management, Advisor
- GCP: Cost Management, Recommender
- Multi-cloud: CloudHealth, Cloudability, Kubecost
Reference Files
references/tagging-standards.md- Tagging conventionsassets/cost-analysis-template.xlsx- Cost analysis spreadsheet
Related Skills
terraform-module-library- For resource provisioningmulti-cloud-architecture- For cloud selection
GitHub リポジトリ
関連スキル
algorithmic-art
メタThis Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.
subagent-driven-development
開発This skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.
executing-plans
デザインUse the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.
cost-optimization
その他This Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.
