MCP HubMCP Hub
スキル一覧に戻る

adk-infra-expert

jeremylongshore
更新日 Today
75 閲覧
712
74
712
GitHubで表示
開発ai

について

このClaudeスキルは、「ADK terraformをデプロイ」や「ADKエージェントをプロビジョニング」などのフレーズでトリガーされ、Terraformを使用してVertex AI ADKインフラを構築します。Agent Engineランタイム、14日間のコード実行サンドボックス、メモリバンク、セキュアなIAMロールなどのコアコンポーネントを設定します。Google Cloud上で安全なマルチエージェント開発環境のデプロイメントを自動化する必要がある場合にご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/adk-infra-expert

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Prerequisites

Before using this skill, ensure:

  • Google Cloud project with billing enabled
  • Terraform 1.0+ installed
  • gcloud CLI authenticated with appropriate permissions
  • Vertex AI API enabled in target project
  • VPC Service Controls access policy created (for enterprise)
  • Understanding of Agent Engine architecture and requirements

Instructions

  1. Initialize Terraform: Set up backend for remote state storage
  2. Configure Variables: Define project_id, region, agent configuration
  3. Provision VPC: Create network infrastructure with Private Service Connect
  4. Set Up IAM: Create service accounts with least privilege roles
  5. Deploy Agent Engine: Configure runtime with code execution and memory bank
  6. Enable VPC-SC: Apply service perimeter for data exfiltration protection
  7. Configure Monitoring: Set up Cloud Monitoring dashboards and alerts
  8. Validate Deployment: Test agent endpoint and verify all components

Output

Agent Engine Deployment:

# {baseDir}/terraform/main.tf
resource "google_vertex_ai_agent_runtime" "adk_agent" {
  project  = var.project_id
  location = var.region
  display_name = "adk-production-agent"

  agent_config {
    model = "gemini-2.5-flash"
    code_execution {
      enabled = true
      state_ttl_days = 14
      sandbox_type = "SECURE_ISOLATED"
    }
    memory_bank {
      enabled = true
    }
  }

  vpc_config {
    vpc_network = google_compute_network.agent_vpc.id
    private_service_connect {
      enabled = true
    }
  }
}

VPC Service Controls:

resource "google_access_context_manager_service_perimeter" "adk_perimeter" {
  parent = "accessPolicies/${var.access_policy_id}"
  title  = "ADK Agent Engine Perimeter"

  status {
    restricted_services = [
      "aiplatform.googleapis.com",
      "run.googleapis.com"
    ]
  }
}

IAM Configuration:

resource "google_service_account" "adk_agent" {
  account_id   = "adk-agent-sa"
  display_name = "ADK Agent Service Account"
}

resource "google_project_iam_member" "agent_identity" {
  project = var.project_id
  role    = "roles/aiplatform.agentUser"
  member  = "serviceAccount:${google_service_account.adk_agent.email}"
}

Error Handling

Terraform State Lock

  • Error: "Error acquiring the state lock"
  • Solution: Use terraform force-unlock <lock-id> or wait for lock expiry

API Not Enabled

  • Error: "Vertex AI API has not been used"
  • Solution: Enable with gcloud services enable aiplatform.googleapis.com

VPC-SC Configuration

  • Error: "Access denied by VPC Service Controls"
  • Solution: Add project to service perimeter or adjust ingress/egress policies

IAM Permission Denied

  • Error: "does not have required permission"
  • Solution: Grant roles/owner temporarily to service account running Terraform

Resource Already Exists

  • Error: "Resource already exists"
  • Solution: Import existing resource or use data source instead

Resources

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: plugins/devops/jeremy-adk-terraform/skills/adk-infra-expert
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る