MCP HubMCP Hub
スキル一覧に戻る

running-clustering-algorithms

jeremylongshore
更新日 Today
50 閲覧
712
74
712
GitHubで表示
その他data

について

このスキルは、Claudeがデータセットに対して自動的にクラスタリングアルゴリズム(K-means、DBSCAN、階層的クラスタリング)を実行できるようにします。クラスター分析の実施、データポイントのグループ化、またはデータ内のパターン識別が必要な場合にご利用ください。データの前処理から結果のコード生成、可視化まで、ワークフロー全体を処理します。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/running-clustering-algorithms

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Overview

This skill empowers Claude to perform clustering analysis on provided datasets. It allows for automated execution of various clustering algorithms, providing insights into data groupings and structures.

How It Works

  1. Analyzing the Context: Claude analyzes the user's request to determine the dataset, desired clustering algorithm (if specified), and any specific requirements.
  2. Generating Code: Claude generates Python code using appropriate ML libraries (e.g., scikit-learn) to perform the clustering task, including data loading, preprocessing, algorithm execution, and result visualization.
  3. Executing Clustering: The generated code is executed, and the clustering algorithm is applied to the dataset.
  4. Providing Results: Claude presents the results, including cluster assignments, performance metrics (e.g., silhouette score, Davies-Bouldin index), and visualizations (e.g., scatter plots with cluster labels).

When to Use This Skill

This skill activates when you need to:

  • Identify distinct groups within a dataset.
  • Perform a cluster analysis to understand data structure.
  • Run K-means, DBSCAN, or hierarchical clustering on a given dataset.

Examples

Example 1: Customer Segmentation

User request: "Run clustering on this customer data to identify customer segments. The data is in customer_data.csv."

The skill will:

  1. Load the customer_data.csv dataset.
  2. Perform K-means clustering to identify distinct customer segments based on their attributes.
  3. Provide a visualization of the customer segments and their characteristics.

Example 2: Anomaly Detection

User request: "Perform DBSCAN clustering on this network traffic data to identify anomalies. The data is available at network_traffic.txt."

The skill will:

  1. Load the network_traffic.txt dataset.
  2. Perform DBSCAN clustering to identify outliers representing anomalous network traffic.
  3. Report the identified anomalies and their characteristics.

Best Practices

  • Data Preprocessing: Always preprocess the data (e.g., scaling, normalization) before applying clustering algorithms to improve performance and accuracy.
  • Algorithm Selection: Choose the appropriate clustering algorithm based on the data characteristics and the desired outcome. K-means is suitable for spherical clusters, while DBSCAN is better for non-spherical clusters and anomaly detection.
  • Parameter Tuning: Tune the parameters of the clustering algorithm (e.g., number of clusters in K-means, epsilon and min_samples in DBSCAN) to optimize the results.

Integration

This skill can be integrated with data loading skills to retrieve datasets from various sources. It can also be combined with visualization skills to generate insightful visualizations of the clustering results.

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: plugins/ai-ml/clustering-algorithm-runner/skills/clustering-algorithm-runner
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る

hybrid-cloud-networking

メタ

This skill configures secure hybrid cloud networking between on-premises infrastructure and cloud platforms like AWS, Azure, and GCP. Use it when connecting data centers to the cloud, building hybrid architectures, or implementing secure cross-premises connectivity. It supports key capabilities such as VPNs and dedicated connections like AWS Direct Connect for high-performance, reliable setups.

スキルを見る

llamaindex

メタ

LlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.

スキルを見る