MCP HubMCP Hub
スキル一覧に戻る

genkit-infra-expert

jeremylongshore
更新日 Today
69 閲覧
712
74
712
GitHubで表示
その他aiautomation

について

このスキルは、開発者がTerraformを使用してGenkit AIアプリケーションを本番環境にデプロイすることを支援します。Firebase Functions、Cloud Runサービス、GKEクラスターなどのインフラストラクチャをプロビジョニングし、監視およびCI/CDパイプラインを構築します。GenkitワークフローのGoogle Cloudへのデプロイを自動化する必要がある場合にご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/genkit-infra-expert

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Prerequisites

Before using this skill, ensure:

  • Google Cloud project with Firebase enabled
  • Terraform 1.0+ installed
  • gcloud and firebase CLI authenticated
  • Genkit application built and containerized
  • API keys for Gemini or other AI models
  • Understanding of Genkit flows and deployment options

Instructions

  1. Choose Deployment Target: Firebase Functions, Cloud Run, or GKE
  2. Configure Terraform Backend: Set up remote state in GCS
  3. Define Variables: Project ID, region, Genkit app configuration
  4. Provision Compute: Deploy functions or containers
  5. Configure Secrets: Store API keys in Secret Manager
  6. Set Up Monitoring: Create dashboards for token usage and latency
  7. Enable Auto-scaling: Configure min/max instances
  8. Validate Deployment: Test Genkit flows via HTTP endpoints

Output

Firebase Functions:

# {baseDir}/terraform/functions.tf
resource "google_cloudfunctions2_function" "genkit_function" {
  name     = "genkit-ai-flow"
  location = var.region

  build_config {
    runtime     = "nodejs20"
    entry_point = "genkitFlow"
  }

  service_config {
    max_instance_count = 100
    available_memory   = "512Mi"
    timeout_seconds    = 300
  }
}

Cloud Run Service:

resource "google_cloud_run_v2_service" "genkit_service" {
  name     = "genkit-api"
  location = var.region

  template {
    scaling {
      min_instance_count = 1
      max_instance_count = 10
    }
    containers {
      image = "gcr.io/${var.project_id}/genkit-app:latest"
      resources {
        limits = {
          cpu = "2"
          memory = "1Gi"
        }
      }
    }
  }
}

Error Handling

Build Failures

  • Error: "Cloud Function build failed"
  • Solution: Check package.json dependencies and Node.js runtime version

Cold Start Latency

  • Warning: "High latency on first request"
  • Solution: Set min_instance_count >= 1 to keep warm instances

Secret Access Denied

  • Error: "Permission denied accessing secret"
  • Solution: Grant secretAccessor role to Cloud Run/Functions service account

Memory Exceeded

  • Error: "Container killed: out of memory"
  • Solution: Increase available_memory or optimize Genkit flow memory usage

Resources

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: plugins/devops/jeremy-genkit-terraform/skills/genkit-infra-expert
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る