cur-data
について
このスキルは、AWSコスト・使用状況レポート(CUR)のデータ構造、カラム形式、分析パターンに関する知識を提供します。開発者がCURファイル形式(CSV、CSV.GZ、Parquet)を理解し、新旧のカラム命名規則を自動的に処理するのに役立ちます。AWSコストデータパイプラインの構築や分析時に使用することで、CURデータフィールドを正確に解釈し、処理を最適化できます。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/cur-dataこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
AWS CUR Data Skill
CUR File Formats
The project supports three CUR file formats:
- CSV: Plain text, largest file size
- CSV.GZ: Gzip compressed CSV, smaller
- Parquet: Columnar format, fastest and smallest (recommended)
Column Name Variants
AWS CUR has two naming conventions. The data processor handles both:
| Canonical Name | Old Format | New Format |
|---|---|---|
| cost | lineItem/UnblendedCost | line_item_unblended_cost |
| account_id | lineItem/UsageAccountId | line_item_usage_account_id |
| service | product/ProductName | product_product_name |
| date | lineItem/UsageStartDate | line_item_usage_start_date |
| region | product/Region | product_region |
| line_item_type | lineItem/LineItemType | line_item_line_item_type |
Key Cost Columns
# Unblended cost - actual cost before discounts
line_item_unblended_cost
# Blended cost - averaged across organization
line_item_blended_cost
# Net cost - after discounts applied
line_item_net_unblended_cost
# Usage amount
line_item_usage_amount
Line Item Types
LINE_ITEM_TYPES = {
'Usage': 'Normal usage charges',
'Tax': 'Tax charges',
'Fee': 'AWS fees',
'Refund': 'Refunds/credits',
'Credit': 'Applied credits',
'RIFee': 'Reserved Instance fees',
'DiscountedUsage': 'RI/SP discounted usage',
'SavingsPlanCoveredUsage': 'Savings Plan usage',
'SavingsPlanNegation': 'SP cost adjustment',
'SavingsPlanUpfrontFee': 'SP upfront payment',
'SavingsPlanRecurringFee': 'SP monthly fee',
'BundledDiscount': 'Free tier/bundled',
'EdpDiscount': 'Enterprise discount',
}
Discount Analysis
To identify discounts and credits:
discount_types = ['Credit', 'Refund', 'EdpDiscount', 'BundledDiscount']
discounts = df[df['line_item_type'].isin(discount_types)]
Savings Plan Analysis
Key columns for savings plans:
savings_plan_columns = [
'savings_plan_savings_plan_arn',
'savings_plan_savings_plan_rate',
'savings_plan_used_commitment',
'savings_plan_total_commitment_to_date',
]
Common Aggregations
# Cost by service
df.groupby('service').agg({'cost': 'sum'}).sort_values('cost', ascending=False)
# Cost by account and service
df.groupby(['account_id', 'service']).agg({'cost': 'sum'})
# Daily trends
df.groupby(df['date'].dt.date).agg({'cost': 'sum'})
# Monthly summary
df.groupby(df['date'].dt.to_period('M')).agg({'cost': 'sum'})
Anomaly Detection
The project uses z-score based detection:
mean = daily_costs.mean()
std = daily_costs.std()
z_scores = (daily_costs - mean) / std
anomalies = daily_costs[abs(z_scores) > 2] # 2 std deviations
Mock Data Reference
Test fixtures provide 6 months of data:
- Production (111111111111): 87% of costs, steady growth
- Development (210987654321): 13% of costs, spiky (load testing)
- Services: EC2, RDS, S3, CloudFront, DynamoDB, Lambda
- Regions: us-east-1, us-west-2, eu-west-1, ap-northeast-1, etc.
- Total: ~$6.2M over 182 days
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
polymarket
メタThis skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.
hybrid-cloud-networking
メタThis skill configures secure hybrid cloud networking between on-premises infrastructure and cloud platforms like AWS, Azure, and GCP. Use it when connecting data centers to the cloud, building hybrid architectures, or implementing secure cross-premises connectivity. It supports key capabilities such as VPNs and dedicated connections like AWS Direct Connect for high-performance, reliable setups.
llamaindex
メタLlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.
