testing-assistant
について
testing-assistantスキルは、Claude Patent Creatorの完全なテストライフサイクル(ユニットテスト、統合テスト、エンドツーエンド検証を含む)を管理します。テストスイートの実行、失敗のデバッグ、適切なテストピラミッド戦略の維持に関する専門的なガイダンスを提供します。開発者は、機能の検証、変更後のテスト、CI/CDパイプラインの設定にこれを利用すべきです。
クイックインストール
Claude Code
推奨/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creatorgit clone https://github.com/RobThePCGuy/Claude-Patent-Creator.git ~/.claude/skills/testing-assistantこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Testing Assistant Skill
Expert system for testing and validating the Claude Patent Creator.
FOR CLAUDE: Test scripts in scripts/ directory.
- Go directly to running appropriate test
- Run from project root
- Tests require active venv
- Only run diagnostics if tests fail
When to Use
Running test suites, validating new features, testing after changes, debugging failures, creating tests, setting up CI/CD, performance testing, E2E validation, regression testing.
Testing Pyramid
/\
/ \ E2E (Manual + Automated)
/----\
/ API \ Integration Tests
/--------\
/ Unit \ Unit Tests
/----------\
Strategy: More unit tests (fast, isolated), fewer integration (moderate), minimal E2E (slow).
Test Suite Overview
scripts/
+-- test_install.py # Complete installation validation
+-- test_gpu.py # GPU detection and CUDA
+-- test_bigquery.py # BigQuery connection
+-- test_analyzers.py # Claims, spec, formalities
+-- test_embedding_speed.py # Performance benchmarks
+-- test_checkpoint.py # Index checkpoint system
Quick Test:
python scripts/test_install.py
Manual Testing via Claude
Test MCP tools through Claude Code interface.
Quick Test Examples
1. MPEP Search: "Search MPEP for claim definiteness requirements"
2. Patent Search: "Search for patents about neural networks filed in 2024"
3. Claims Review: "Review these claims: [paste test claims]"
4. Full Review: "/full-review" (with test application)
5. Diagrams: "Create a flowchart for this process: [describe]"
Validation Checklist
[OK] MPEP search returns relevant results
[OK] BigQuery search finds patents
[OK] Claims analyzer identifies issues
[OK] Specification analyzer checks support
[OK] Formalities checker validates format
[OK] Diagrams generate successfully
[OK] Full review workflow completes
[OK] All MCP tools accessible
[OK] Error messages clear and helpful
[OK] Performance acceptable (<2s most ops)
Creating New Tests
Quick Start
# Unit test template
def test_basic_functionality():
from mcp_server.your_module import YourClass
instance = YourClass()
result = instance.method("test input")
assert result is not None
print("[OK] test_basic_functionality passed")
Test Categories:
- Basic functionality
- Edge cases
- Performance
- Error handling
Performance Testing
Quick Benchmark
from mcp_server.mpep_search import MPEPIndex
import time
index = MPEPIndex()
index.search("test", top_k=5) # Warm up
start = time.time()
result = index.search("claim definiteness", top_k=5)
duration = time.time() - start
print(f"Search took: {duration:.3f}s")
Performance Thresholds
| Operation | Threshold | Notes |
|---|---|---|
| MPEP search (first) | <3s | Model loading |
| MPEP search (subsequent) | <500ms | Cached models |
| BigQuery search | <2s | Network dependent |
| Claims analysis | <3s | 20 claims |
| Spec analysis | <10s | 10 pages |
| Diagram generation | <1s | SVG output |
Troubleshooting Test Failures
| Problem | Solution |
|---|---|
| Import errors | Activate venv, pip install -r requirements.txt |
| GPU tests fail | Check nvidia-smi, reinstall PyTorch, or skip |
| BigQuery fails | Re-auth: gcloud auth application-default login |
| Index not found | Rebuild: patent-creator rebuild-index |
| Too slow | Check GPU usage, first run slower, check system load |
Best Practices
- Test after every change
- Automated testing
- Test pyramid (more unit, fewer E2E)
- Fast tests (<5 min suite)
- Isolated tests (no dependencies)
- Clear assertions
- Document tests
- Version control tests
- Regular execution (weekly)
- Monitor performance
Quick Reference
Run All Tests
python scripts/test_install.py
python scripts/test_gpu.py
python scripts/test_bigquery.py
python scripts/test_analyzers.py
python scripts/test_embedding_speed.py
Regression Test
python scripts/test_install.py || exit 1
python scripts/test_bigquery.py || exit 1
python scripts/test_analyzers.py || exit 1
echo "[OK] All regression tests passed!"
Manual Checklist
□ Ask Claude to search MPEP
□ Ask Claude to search patents
□ Ask Claude to review claims
□ Run /full-review command
□ Generate a diagram
□ Verify all tools work
□ Check performance (<2s)
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
webapp-testing
テストThis Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.
