Data Quality Rules
について
このスキルは、開発者を包括的な実装詳細のためにメインのデータ検証ルールスキルにリダイレクトします。データベース、アプリケーション、APIにわたる多層検証パターン、ライブラリ、エラー処理を網羅しています。詳細なデータ品質ルールの実装に関する参照ポイントとしてご利用ください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/Data Quality RulesこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Data Quality Rules
This skill is covered in detail in the main Data Validation Rules skill.
Please refer to: 43-data-reliability/data-validation-rules/SKILL.md
That skill covers:
- Levels of data validation (database, application, pipeline, API)
- Common validation patterns (required fields, type, format, range, enum, cross-field, conditional)
- Validation libraries (Pydantic, Zod, JSON Schema, Marshmallow, Cerberus, Joi, Yup)
- Database-level validation (CHECK constraints, triggers, domain types)
- API validation (FastAPI, Fastify)
- ETL pipeline validation
- Validation error handling
- Performance considerations
- Real-world validation scenarios
Related Skills
43-data-reliability/data-validation-rules(Main skill)43-data-reliability/data-quality-checks43-data-reliability/data-contracts
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
polymarket
メタThis skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.
