MCP HubMCP Hub
スキル一覧に戻る

Data Quality Rules

majiayu000
更新日 Yesterday
15 閲覧
58
9
58
GitHubで表示
メタaidata

について

このスキルは、開発者を包括的な実装詳細のためにメインのデータ検証ルールスキルにリダイレクトします。データベース、アプリケーション、APIにわたる多層検証パターン、ライブラリ、エラー処理を網羅しています。詳細なデータ品質ルールの実装に関する参照ポイントとしてご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/Data Quality Rules

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Data Quality Rules

This skill is covered in detail in the main Data Validation Rules skill.

Please refer to: 43-data-reliability/data-validation-rules/SKILL.md

That skill covers:

  • Levels of data validation (database, application, pipeline, API)
  • Common validation patterns (required fields, type, format, range, enum, cross-field, conditional)
  • Validation libraries (Pydantic, Zod, JSON Schema, Marshmallow, Cerberus, Joi, Yup)
  • Database-level validation (CHECK constraints, triggers, domain types)
  • API validation (FastAPI, Fastify)
  • ETL pipeline validation
  • Validation error handling
  • Performance considerations
  • Real-world validation scenarios

Related Skills

  • 43-data-reliability/data-validation-rules (Main skill)
  • 43-data-reliability/data-quality-checks
  • 43-data-reliability/data-contracts

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/data-quality-rules

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る