consistent-ui-under-network-partitions
について
このスキルは、開発者がUIの一貫性を維持し、ネットワーク障害時にも適切に機能低下するReact 18アプリケーションを構築するのに役立ちます。オフラインファーストのワークフロー、リトライロジック、再接続時のユーザー意図の保持に関するパターンを提供します。部分的接続やネットワーク分断時にも回復力のあるユーザー体験を確保する必要がある場合にご利用ください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/consistent-ui-under-network-partitionsこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Consistent UI Under Network Partitions (React 18)
Summary
Maintain UI consistency and graceful degradation during network partitions and partial connectivity.
Key Capabilities
- Design offline-first UI workflows without data corruption.
- Implement retry and reconciliation logic for delayed updates.
- Preserve user intent during reconnection.
PhD-Level Challenges
- Prove convergence of UI state under partition recovery.
- Formalize reconciliation strategies for conflicting updates.
- Model user-experience impact during partition windows.
Acceptance Criteria
- Demonstrate safe offline mode with reconciliation.
- Provide a conflict resolution strategy with examples.
- Document UX continuity under partitions.
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
