MCP HubMCP Hub
スキル一覧に戻る

complexity-gate

majiayu000
更新日 Yesterday
20 閲覧
58
9
58
GitHubで表示
その他general

について

このClaude Skillは、GitHubイシューの複雑さを推定し、要件を分析してターン数を予測することで、実装タイムアウトを防止します。軽量な推定を用いて、コストのかかる実装を開始する前に、イシューの分割が必要かどうかを判断します。開発者は複雑なタスクのゲートキーパーとしてこれを活用し、トークン使用を最適化して確実な完了を保証すべきです。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/complexity-gate

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Complexity Gate

You estimate whether a GitHub issue is too complex for a single LLM implementation session.

Task

Given an issue's title, body, and acceptance criteria, estimate:

  1. How many LLM turns the implementation would take
  2. Whether the issue needs to be split into smaller pieces

Complexity Guidelines

ComplexityTurnsCharacteristics
Simple5-81-3 criteria, single method, no edge cases
Medium8-154-6 criteria, 2-4 methods, standard patterns
Complex15-257-10 criteria, 5-7 methods, edge cases
Too Large25+10+ criteria, 8+ methods, multiple subsystems

Output Format

Return ONLY JSON (no markdown, no explanation):

{
  "estimated_turns": 15,
  "complexity_score": 0.5,
  "needs_split": false,
  "split_suggestions": [],
  "confidence": 0.8,
  "reasoning": "Standard CRUD with 5 methods, well-defined interface"
}

Fields:

  • estimated_turns: Number of LLM turns needed to implement (5-40)
  • complexity_score: Float from 0.0-1.0 indicating complexity
  • needs_split: Boolean indicating if issue should be split into smaller pieces
  • split_suggestions: List of actionable suggestions for splitting (empty if needs_split=false)
  • confidence: Float from 0.0-1.0 indicating estimation confidence
  • reasoning: One sentence explanation of the estimate

Red Flags (triggers auto-split)

The following thresholds trigger instant split (no LLM needed):

  • More than 12 acceptance criteria
  • More than 8 methods to implement
  • Estimated turns exceeds 20

Additional patterns that suggest splitting:

  • 4+ trigger types or handlers
  • Multiple enum types to implement
  • Changes to config + implementation + tests
  • "Implement X with Y integration" (two things at once)

Split Suggestions: When needs_split=true, the system automatically generates actionable split suggestions based on:

  • Trigger groupings (group N triggers into 2-3 issues of ~3 each)
  • CRUD operation separation
  • Layer separation (model/API/UI/config)
  • Method groupings (N methods → 2-3 issues of ~3 methods each)
  • Criteria grouping (N criteria → 2-3 issues of ~4 criteria each)

Note: When needs_split=true, the orchestrator automatically invokes the IssueSplitterAgent to create 2-4 smaller sub-issues. The parent issue is marked as SPLIT and implementation continues with the child issues.

Turn Estimation Heuristics

Formula

When LLM estimation is unavailable, use this calibrated heuristic:

estimated_turns = 5 + criteria_count + int(method_count * 1.5)

This formula is calibrated to match sizing guidelines:

  • Small (1-4 criteria): ~10 turns
  • Medium (5-8 criteria): ~15 turns
  • Large (9-12 criteria): ~20 turns

Estimation Factors

When estimating turns manually, consider:

  1. Test Writing: +2-4 turns for writing comprehensive tests
  2. Implementation: +1-2 turns per method
  3. Iteration: +2-5 turns for fixing test failures
  4. Edge Cases: +1-2 turns per edge case to handle
  5. Config/Setup: +1-2 turns if config changes needed

Tiered Estimation Strategy

The implementation uses a three-tier approach:

  1. Instant Pass (no LLM): ≤5 criteria AND ≤3 methods → 10 turns, confidence 0.95
  2. Instant Fail (no LLM): >12 criteria OR >8 methods → 35 turns, needs_split=true, confidence 0.95
  3. Borderline Cases (uses Haiku LLM): Everything else → LLM estimate with confidence 0.8

Examples

Simple Issue (8 turns)

Title: Add helper method for string sanitization
Criteria:
- [ ] Create sanitize_input() function
- [ ] Handle empty strings
- [ ] Unit tests

Reasoning: Single function with clear behavior, 3 criteria.

Medium Issue (15 turns)

Title: Implement user CRUD operations
Criteria:
- [ ] create_user() method
- [ ] get_user() method
- [ ] update_user() method
- [ ] delete_user() method
- [ ] Input validation
- [ ] Unit tests for each operation

Reasoning: 4 methods with validation, standard pattern.

Too Large (30+ turns - needs split)

Title: Implement CheckpointSystem with trigger detection
Criteria:
- [ ] 6 trigger types to detect
- [ ] 8+ methods to implement
- [ ] Config changes
- [ ] Async operations
- [ ] Unit tests for each trigger

Reasoning: Multiple subsystems (triggers + checkpoints), too many methods.

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/complexity-gate

関連スキル

algorithmic-art

メタ

This Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.

スキルを見る

subagent-driven-development

開発

This skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.

スキルを見る

executing-plans

デザイン

Use the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.

スキルを見る

cost-optimization

その他

This Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.

スキルを見る