analyzing-financial-statements
について
このスキルは、投資分析のために財務諸表データから主要な財務比率と指標を計算します。ROE、P/E、負債対資本比率など、収益性、流動性、レバレッジ、効率性、評価比率をサポートしています。開発者は、損益計算書、貸借対照表、キャッシュフロー計算書のデータを提供することで、プログラムによって企業の業績を分析することができます。
クイックインストール
Claude Code
推奨/plugin add https://github.com/ronnycoding/.claudegit clone https://github.com/ronnycoding/.claude.git ~/.claude/skills/analyzing-financial-statementsこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Financial Ratio Calculator Skill
This skill provides comprehensive financial ratio analysis for evaluating company performance, profitability, liquidity, and valuation.
Capabilities
Calculate and interpret:
- Profitability Ratios: ROE, ROA, Gross Margin, Operating Margin, Net Margin
- Liquidity Ratios: Current Ratio, Quick Ratio, Cash Ratio
- Leverage Ratios: Debt-to-Equity, Interest Coverage, Debt Service Coverage
- Efficiency Ratios: Asset Turnover, Inventory Turnover, Receivables Turnover
- Valuation Ratios: P/E, P/B, P/S, EV/EBITDA, PEG
- Per-Share Metrics: EPS, Book Value per Share, Dividend per Share
How to Use
- Input Data: Provide financial statement data (income statement, balance sheet, cash flow)
- Select Ratios: Specify which ratios to calculate or use "all" for comprehensive analysis
- Interpretation: The skill will calculate ratios and provide industry-standard interpretations
Input Format
Financial data can be provided as:
- CSV with financial line items
- JSON with structured financial statements
- Text description of key financial figures
- Excel files with financial statements
Output Format
Results include:
- Calculated ratios with values
- Industry benchmark comparisons (when available)
- Trend analysis (if multiple periods provided)
- Interpretation and insights
- Excel report with formatted results
Example Usage
"Calculate key financial ratios for this company based on the attached financial statements"
"What's the P/E ratio if the stock price is $50 and annual earnings are $2.50 per share?"
"Analyze the liquidity position using the balance sheet data"
Scripts
calculate_ratios.py: Main calculation engine for all financial ratiosinterpret_ratios.py: Provides interpretation and benchmarking
Best Practices
- Always validate data completeness before calculations
- Handle missing values appropriately (use industry averages or exclude)
- Consider industry context when interpreting ratios
- Include period comparisons for trend analysis
- Flag unusual or concerning ratios
Limitations
- Requires accurate financial data
- Industry benchmarks are general guidelines
- Some ratios may not apply to all industries
- Historical data doesn't guarantee future performance
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
polymarket
メタThis skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.
hybrid-cloud-networking
メタThis skill configures secure hybrid cloud networking between on-premises infrastructure and cloud platforms like AWS, Azure, and GCP. Use it when connecting data centers to the cloud, building hybrid architectures, or implementing secure cross-premises connectivity. It supports key capabilities such as VPNs and dedicated connections like AWS Direct Connect for high-performance, reliable setups.
llamaindex
メタLlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.
