MCP HubMCP Hub
スキル一覧に戻る

analyzing-system-throughput

jeremylongshore
更新日 Today
48 閲覧
712
74
712
GitHubで表示
その他data

について

このスキルは、システムのスループットを分析し、リクエスト処理、データ処理、リソース利用におけるボトルネックを特定します。パフォーマンスと監視にBashなどのツールを使用し、容量制限やスケーリング戦略を評価する開発者向けに設計されています。主要な機能には、重要なコンポーネントの特定と、最適化の洞察を提供するためのスループットメトリクスの分析が含まれます。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/analyzing-system-throughput

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Overview

This skill allows Claude to analyze system performance and identify areas for throughput optimization. It uses the throughput-analyzer plugin to provide insights into request handling, data processing, and resource utilization.

How It Works

  1. Identify Critical Components: Determines which system components are most relevant to throughput.
  2. Analyze Throughput Metrics: Gathers and analyzes current throughput metrics for the identified components.
  3. Identify Limiting Factors: Pinpoints the bottlenecks and constraints that are hindering optimal throughput.
  4. Evaluate Scaling Strategies: Explores potential scaling strategies and their impact on overall throughput.

When to Use This Skill

This skill activates when you need to:

  • Analyze system throughput to identify performance bottlenecks.
  • Optimize system performance for increased capacity.
  • Evaluate scaling strategies to improve throughput.

Examples

Example 1: Analyzing Web Server Throughput

User request: "Analyze the throughput of my web server and identify any bottlenecks."

The skill will:

  1. Activate the throughput-analyzer plugin.
  2. Analyze request throughput, data throughput, and resource saturation of the web server.
  3. Provide a report identifying potential bottlenecks and optimization opportunities.

Example 2: Optimizing Data Processing Pipeline

User request: "Optimize the throughput of my data processing pipeline."

The skill will:

  1. Activate the throughput-analyzer plugin.
  2. Analyze data throughput, queue processing, and concurrency limits of the data processing pipeline.
  3. Suggest improvements to increase data processing rates and overall throughput.

Best Practices

  • Component Selection: Focus the analysis on the most throughput-critical components to avoid unnecessary overhead.
  • Metric Interpretation: Carefully interpret throughput metrics to accurately identify limiting factors.
  • Scaling Evaluation: Thoroughly evaluate the potential impact of scaling strategies before implementation.

Integration

This skill can be used in conjunction with other monitoring and performance analysis tools to gain a more comprehensive understanding of system behavior. It provides a starting point for further investigation and optimization efforts.

Prerequisites

  • Access to throughput metrics in {baseDir}/metrics/throughput/
  • System performance monitoring tools
  • Historical throughput baselines
  • Current capacity and scaling limits

Instructions

  1. Identify critical system components for throughput analysis
  2. Collect request and data throughput metrics
  3. Analyze resource saturation and queue depths
  4. Identify bottlenecks and limiting factors
  5. Evaluate horizontal and vertical scaling strategies
  6. Generate capacity planning recommendations

Output

  • Throughput analysis reports with current capacity
  • Bottleneck identification and root cause analysis
  • Resource saturation metrics
  • Scaling strategy recommendations
  • Capacity planning projections

Error Handling

If throughput analysis fails:

  • Verify metrics collection infrastructure
  • Check system monitoring tool access
  • Validate historical baseline data
  • Ensure performance testing environment
  • Review component identification logic

Resources

  • Throughput optimization best practices
  • Capacity planning methodologies
  • Scaling strategy comparison guides
  • Performance bottleneck detection techniques

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: plugins/performance/throughput-analyzer/skills/throughput-analyzer
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る

hybrid-cloud-networking

メタ

This skill configures secure hybrid cloud networking between on-premises infrastructure and cloud platforms like AWS, Azure, and GCP. Use it when connecting data centers to the cloud, building hybrid architectures, or implementing secure cross-premises connectivity. It supports key capabilities such as VPNs and dedicated connections like AWS Direct Connect for high-performance, reliable setups.

スキルを見る

llamaindex

メタ

LlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.

スキルを見る