MCP HubMCP Hub
スキル一覧に戻る

setting-up-distributed-tracing

jeremylongshore
更新日 Today
89 閲覧
712
74
712
GitHubで表示
メタautomation

について

このスキルは、マイクロサービスにおける分散トレーシングの設定を自動化し、エンドツーエンドのリクエスト可視性を実現します。ユーザーがオブザーバビリティやパフォーマンスのトラブルシューティングを必要とする際に、コンテキスト伝播、スパン作成、トレース収集を構成します。「トレーシングを設定して」や「マイクロサービスのOpenTelemetryを構成して」などのフレーズでプロンプトされた際にご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/setting-up-distributed-tracing

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Overview

This skill streamlines the process of setting up distributed tracing in a microservices environment. It guides you through the key steps of instrumenting your services, configuring trace context propagation, and selecting a backend for trace collection and analysis, enabling comprehensive monitoring and debugging.

How It Works

  1. Backend Selection: Determines the preferred tracing backend (e.g., Jaeger, Zipkin, Datadog).
  2. Instrumentation Strategy: Designs an instrumentation strategy for each service, focusing on key operations and dependencies.
  3. Configuration Generation: Generates the necessary configuration files and code snippets to enable distributed tracing.

When to Use This Skill

This skill activates when you need to:

  • Implement distributed tracing in a microservices application.
  • Gain end-to-end visibility into request flows across multiple services.
  • Troubleshoot performance bottlenecks and latency issues.

Examples

Example 1: Adding Tracing to a New Microservice

User request: "setup tracing for the new payment service"

The skill will:

  1. Prompt for the preferred tracing backend (e.g., Jaeger).
  2. Generate code snippets for OpenTelemetry instrumentation in the payment service.

Example 2: Troubleshooting Performance Issues

User request: "implement distributed tracing to debug slow checkout process"

The skill will:

  1. Guide the user through instrumenting relevant services in the checkout flow.
  2. Provide configuration examples for context propagation.

Best Practices

  • Backend Choice: Select a tracing backend that aligns with your existing infrastructure and monitoring tools.
  • Sampling Strategy: Implement a sampling strategy to manage trace volume and cost, especially in high-traffic environments.
  • Context Propagation: Ensure proper context propagation across all services to maintain trace continuity.

Integration

This skill can be used in conjunction with other plugins to automate the deployment and configuration of tracing infrastructure. For example, it can integrate with infrastructure-as-code tools to provision Jaeger or Zipkin clusters.

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: backups/skills-batch-20251204-000554/plugins/performance/distributed-tracing-setup/skills/distributed-tracing-setup
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

Algorithmic Art Generation

メタ

This skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.

スキルを見る