MCP HubMCP Hub
スキル一覧に戻る

patent-diagram-generator

RobThePCGuy
更新日 Yesterday
98 閲覧
2
2
GitHubで表示
メタdata

について

このClaudeスキルは、Graphvizを使用してフローチャートやブロック図などの特許形式の技術図を生成し、参照番号を自動的に付加します。特許請求の方法クレーム、システムアーキテクチャ、その他の特許図面用の図表作成を目的としています。開発者は、特許文書向けの正式な図表を迅速に作成する必要がある際に本スキルを呼び出すようにしてください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creator
Git クローン代替
git clone https://github.com/RobThePCGuy/Claude-Patent-Creator.git ~/.claude/skills/patent-diagram-generator

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Patent Diagram Generator Skill

Create patent-style technical diagrams including flowcharts, block diagrams, and system architectures using Graphviz.

When to Use

Invoke this skill when users ask to:

  • Create flowcharts for method claims
  • Generate block diagrams for system claims
  • Draw system architecture diagrams
  • Create technical illustrations for patents
  • Add reference numbers to diagrams
  • Generate patent figures

What This Skill Does

  1. Flowchart Generation:

    • Method step flowcharts
    • Decision trees
    • Process flows with branches
    • Patent-style step numbering
  2. Block Diagram Creation:

    • System component diagrams
    • Hardware architecture diagrams
    • Software module diagrams
    • Component interconnections
  3. Custom Diagram Rendering:

    • Render Graphviz DOT code
    • Support multiple formats (SVG, PNG, PDF)
    • Multiple layout engines (dot, neato, fdp, circo, twopi)
  4. Patent-Style Formatting:

    • Add reference numbers (10, 20, 30, etc.)
    • Use clear labels and connections
    • Professional formatting for USPTO filing

Required Dependencies

This skill requires Graphviz to be installed:

Windows:

choco install graphviz

Linux:

sudo apt install graphviz

Mac:

brew install graphviz

Python Package:

pip install graphviz

How to Use

When this skill is invoked:

  1. Load diagram generator:

    import sys
    sys.path.insert(0, os.path.join(os.environ.get('CLAUDE_PLUGIN_ROOT', '.'), 'python'))
    from python.diagram_generator import PatentDiagramGenerator
    
    generator = PatentDiagramGenerator()
    
  2. Create flowchart from steps:

    steps = [
        {"id": "start", "label": "Start", "shape": "ellipse", "next": ["step1"]},
        {"id": "step1", "label": "Initialize System", "shape": "box", "next": ["decision"]},
        {"id": "decision", "label": "Is Valid?", "shape": "diamond", "next": ["step2", "error"]},
        {"id": "step2", "label": "Process Data", "shape": "box", "next": ["end"]},
        {"id": "error", "label": "Handle Error", "shape": "box", "next": ["end"]},
        {"id": "end", "label": "End", "shape": "ellipse", "next": []}
    ]
    
    diagram_path = generator.create_flowchart(
        steps=steps,
        filename="method_flowchart",
        output_format="svg"
    )
    
  3. Create block diagram:

    blocks = [
        {"id": "input", "label": "Input\\nSensor", "type": "input"},
        {"id": "cpu", "label": "Central\\nProcessor", "type": "process"},
        {"id": "memory", "label": "Memory\\nStorage", "type": "storage"},
        {"id": "output", "label": "Output\\nDisplay", "type": "output"}
    ]
    
    connections = [
        ["input", "cpu", "raw data"],
        ["cpu", "memory", "store"],
        ["memory", "cpu", "retrieve"],
        ["cpu", "output", "processed data"]
    ]
    
    diagram_path = generator.create_block_diagram(
        blocks=blocks,
        connections=connections,
        filename="system_diagram",
        output_format="svg"
    )
    
  4. Render custom DOT code:

    dot_code = """
    digraph PatentSystem {
        rankdir=LR;
        node [shape=box, style=rounded];
    
        Input [label="User Input\\n(10)"];
        Processor [label="Processing Unit\\n(20)"];
        Output [label="Display\\n(30)"];
    
        Input -> Processor [label="data"];
        Processor -> Output [label="result"];
    }
    """
    
    diagram_path = generator.render_dot_diagram(
        dot_code=dot_code,
        filename="custom_diagram",
        output_format="svg",
        engine="dot"
    )
    
  5. Add reference numbers:

    # After creating a diagram, add patent-style reference numbers
    reference_map = {
        "Input Sensor": 10,
        "Central Processor": 20,
        "Memory Storage": 30,
        "Output Display": 40
    }
    
    annotated_path = generator.add_reference_numbers(
        svg_path=diagram_path,
        reference_map=reference_map
    )
    

Diagram Templates

Get common templates:

templates = generator.get_diagram_templates()

# Available templates:
# - simple_flowchart: Basic process flow
# - system_block: System architecture
# - method_steps: Sequential method
# - component_hierarchy: Hierarchical structure

Shape Types

Flowchart Shapes

  • ellipse: Start/End points
  • box: Process steps
  • diamond: Decision points
  • parallelogram: Input/Output operations
  • cylinder: Database/Storage

Block Diagram Types

  • input: Input devices/sensors
  • output: Output devices/displays
  • process: Processing units
  • storage: Memory/storage
  • decision: Control logic
  • default: General components

Layout Engines

  • dot: Hierarchical (top-down/left-right)
  • neato: Spring model layout
  • fdp: Force-directed layout
  • circo: Circular layout
  • twopi: Radial layout

Output Formats

  • svg: Scalable Vector Graphics (best for editing)
  • png: Raster image (good for viewing)
  • pdf: Portable Document Format (USPTO compatible)

Patent-Style Reference Numbers

Convention:

  • Main components: 10, 20, 30, 40, ...
  • Sub-components: 12, 14, 16 (under 10)
  • Elements: 22, 24, 26 (under 20)

Example labeling:

"Input Sensor (10)"
"  - Detector Element (12)"
"  - Signal Processor (14)"
"Central Unit (20)"
"  - CPU Core (22)"
"  - Cache (24)"

Presentation Format

When creating diagrams:

  1. Describe what will be generated: "Creating a flowchart for the authentication method with 5 steps..."

  2. Generate the diagram: Run Python code to create SVG/PNG/PDF

  3. Show file location: "Diagram created: ${CLAUDE_PLUGIN_ROOT}/python\diagrams\method_flowchart.svg"

  4. List reference numbers (if added):

    Reference Numbers:
    - Input Module (10)
    - Processing Unit (20)
    - Output Interface (30)
    

Common Use Cases

  1. Method Claims → Flowcharts

    • Show sequential steps
    • Include decision branches
    • Number steps (S1, S2, S3...)
  2. System Claims → Block Diagrams

    • Show components and connections
    • Use reference numbers
    • Indicate data flow directions
  3. Architecture Diagrams → Custom DOT

    • Complex system layouts
    • Multiple interconnections
    • Hierarchical structures

Error Handling

If Graphviz is not installed:

  1. Check installation: dot -V
  2. Install for your OS (see above)
  3. Verify Python package: pip show graphviz
  4. Test generation: python scripts/test_diagrams.py

Tools Available

  • Bash: To run Python diagram generation
  • Write: To save DOT code or diagrams
  • Read: To load existing diagrams or templates

GitHub リポジトリ

RobThePCGuy/Claude-Patent-Creator
パス: skills/patent-diagram-generator
bigqueryclaude-codeclaude-code-pluginfaissmcp-servermpep

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る

hybrid-cloud-networking

メタ

This skill configures secure hybrid cloud networking between on-premises infrastructure and cloud platforms like AWS, Azure, and GCP. Use it when connecting data centers to the cloud, building hybrid architectures, or implementing secure cross-premises connectivity. It supports key capabilities such as VPNs and dedicated connections like AWS Direct Connect for high-performance, reliable setups.

スキルを見る

llamaindex

メタ

LlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.

スキルを見る