compact
について
このスキルは、自動圧縮が失敗した際にVSCode/Cursor拡張機能のコンテキスト保存を手動でトリガーし、新規開始前に状態を保持できるようにします。コンテキスト使用率が80%以上に達し、会話履歴を維持する必要がある場合にご利用ください。拡張機能フックのサポートが限定的な状況において、開発者がコンテキスト管理を直接制御できる回避策を提供します。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/compactこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Manual Context Save (Compact Workaround)
Why This Exists
VSCode and Cursor extensions have limited hook support (GitHub issue #15021).
The PreCompact hook may not trigger automatically, leading to lost context.
This skill provides manual control to save state before context overflow.
When to Use
- Context warning shows 80%+ usage
- Working in VSCode or Cursor extension
- Before starting a new conversation
- When auto-compact doesn't seem to work
Execution Steps
Step 1: Detect Environment
# Check current environment
source ~/.claude/hooks/detect-environment.sh 2>/dev/null && print_env_info || echo "Environment detection unavailable"
Step 2: Get Current Session ID
The session ID is needed to save context properly:
# Try to get session ID from state
SESSION_ID=$(cat ~/.ralph/state/current-session 2>/dev/null || echo "manual-$(date +%Y%m%d-%H%M%S)")
echo "Session: $SESSION_ID"
Step 3: Extract and Save Context
# Run the pre-compact hook manually
export SESSION_ID="${SESSION_ID:-manual-$(date +%Y%m%d-%H%M%S)}"
# Create input JSON for the hook
echo "{\"hook_event_name\":\"PreCompact\",\"session_id\":\"$SESSION_ID\",\"transcript_path\":\"\"}" | \
~/.claude/hooks/pre-compact-handoff.sh
echo ""
echo "✅ Context saved to:"
echo " Ledger: ~/.ralph/ledgers/CONTINUITY_RALPH-$SESSION_ID.md"
echo " Handoff: ~/.ralph/handoffs/$SESSION_ID/"
Step 4: Verify Save
# Show the saved ledger
echo "=== SAVED LEDGER ==="
head -30 ~/.ralph/ledgers/CONTINUITY_RALPH-$SESSION_ID.md 2>/dev/null || echo "Ledger not found"
Alternative: Use Ralph CLI
If the above doesn't work, use the Ralph CLI directly:
ralph compact
This wrapper command handles all the complexity automatically.
Post-Compact Actions
After saving context:
- Start fresh: Use
/clearor start a new conversation - Restore context: The
SessionStarthook will auto-load the saved ledger - Verify restoration: Check that your objective is loaded
Recovery
If context was lost without saving:
# List recent ledgers
ralph ledger list
# Load a specific ledger
ralph ledger load <session-id>
# Search handoffs
ralph handoff search "keyword"
Troubleshooting
Hook not found
# Verify hooks exist
ls -la ~/.claude/hooks/pre-compact-handoff.sh
ls -la ~/.claude/hooks/detect-environment.sh
# If missing, sync from repo
ralph sync-global
Permission denied
# Make hooks executable
chmod +x ~/.claude/hooks/*.sh
chmod +x ~/.claude/scripts/*.py
Context extractor fails
# Test context extractor directly
python3 ~/.claude/scripts/context-extractor.py --project . --pretty
GitHub リポジトリ
関連スキル
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
langchain
メタLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
