MCP HubMCP Hub
スキル一覧に戻る

abaqus-thermal-analysis

majiayu000
更新日 Today
110 閲覧
58
9
58
GitHubで表示
その他automation

について

このスキルは、熱伝達解析のための完全なAbaqusワークフローを提供し、定常状態および過渡熱シミュレーションの両方を扱います。機械的応力を伴わない温度分布、伝導、対流問題に設計されています。開発者が純粋な熱解析のみを必要とする場合に使用し、熱応力ケースは連成解析に振り分けてください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/abaqus-thermal-analysis

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Abaqus Thermal Analysis Workflow

Heat transfer analysis for steady-state or transient temperature distribution. Use when user needs temperature field without mechanical stress.

When to Use This Skill

Route here when user mentions:

  • "Heat transfer analysis", "temperature distribution"
  • "How hot will it get?", "thermal analysis"
  • "Conduction", "convection", "radiation"
  • "Heat sink design", "cooling analysis"
  • "Steady-state temperature", "transient heating/cooling"

Route elsewhere:

  • Thermal stress (temperature causing deformation) → /abaqus-coupled-analysis
  • Just stress analysis → /abaqus-static-analysis
  • Temperature as initial condition only → /abaqus-field

Prerequisites

Before thermal analysis:

  1. Geometry defined
  2. Thermal conductivity (k) - required for all thermal analysis
  3. For transient: also need density (ρ) and specific heat (cp)

Workflow: Thermal Analysis

Step 1: Understand User's Goal

Ask if unclear:

  • Steady-state or transient? Final equilibrium vs temperature over time?
  • Boundary temperatures? Fixed temperature surfaces?
  • Convection? Film coefficient and ambient temperature?
  • Heat sources? Applied heat flux or internal heat generation?

Step 2: Choose Analysis Type

User WantsAnalysis Type
Final equilibrium temperatureSTEADY_STATE
Temperature vs time historyTRANSIENT
Cool-down or heat-up timeTRANSIENT
Just the end resultSTEADY_STATE

Decision rule: Use steady-state unless user needs temperature history or time-dependent behavior.

Step 3: Define Thermal Material Properties

PropertyRequired ForUnits (SI-mm)
Conductivity (k)All thermalmW/(mm·K)
Specific heat (cp)TransientmJ/(tonne·K)
Density (ρ)Transienttonne/mm³

Common materials (SI-mm units):

Materialkcpρ
Steel505.0e117.85e-9
Aluminum1679.0e112.70e-9
Copper3853.85e118.96e-9

Step 4: Apply Thermal Boundary Conditions

BC TypeUse ForRequired Inputs
TemperatureBCFixed temperature surfaceTemperature value
FilmConditionConvection to ambientFilm coeff, sink temp
SurfaceHeatFluxHeat inputFlux magnitude (mW/mm²)
RadiationToAmbientRadiation coolingEmissivity, ambient temp
BodyHeatFluxInternal heat generationVolumetric heat rate

Minimum requirement: At least one temperature BC or heat flux boundary.

Step 5: Create Heat Transfer Step

ParameterSteady-StateTransient
responseSTEADY_STATETRANSIENT
timePeriod1.0 (arbitrary)Actual duration (s)
initialInc-Start increment
maxInc-Largest allowed increment
deltmx-Max temp change per increment

Step 6: Mesh with Heat Transfer Elements

ElementUse
DC3D8Standard 8-node hex (recommended)
DC3D44-node tet (for complex geometry)
DC3D2020-node hex (high accuracy)

Note: Heat transfer elements (DC*) are different from structural elements (C3D*).

Step 7: Run Analysis and Extract Results

Request these field outputs:

  • NT - Nodal temperature
  • HFL - Heat flux vector
  • RFL - Reaction heat flux
  • HFLM - Heat flux magnitude

Validation Checklist

After analysis, verify:

  • Temperature range is physically reasonable
  • Heat balance: flux in ≈ flux out (steady-state)
  • No unexpected hot/cold spots
  • Transient: temperature stabilizes by end of analysis

Troubleshooting

ProblemLikely CauseSolution
Temperature oscillationLarge increments in transientReduce maxInc or deltmx
Non-physical temperatureUnit mismatchVerify k, cp, ρ units
No heat flowMissing BC or bad regionCheck boundary conditions
Negative temperature (Kelvin)Bad setupReview initial conditions

Related Skills

  • /abaqus-coupled-analysis - Thermal + structural (thermomechanical)
  • /abaqus-material - Thermal material properties
  • /abaqus-field - Initial temperature fields

Code Patterns

For API syntax and code examples, see:

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/data/abaqus-thermal-analysis

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

Algorithmic Art Generation

メタ

This skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.

スキルを見る