MCP HubMCP Hub
スキル一覧に戻る

create-prompt

majiayu000
更新日 Today
22 閲覧
58
9
58
GitHubで表示
メタai

について

`create-prompt`スキルは、Claude、GPT、その他のLLM向けに効果的なプロンプトを構築・最適化するための専門的なプロンプトエンジニアリングを提供します。開発者が、モデルのパフォーマンスを向上させるためのシステムプロンプト、ユーザー指示、少数ショット例の作成において実証済みの技術を習得できるよう導きます。明確さとより良い結果を得るために、プロンプトの構造化、改良、強化が必要な際は、このスキルをご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/create-prompt

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

<objective> Create highly effective prompts using proven techniques from Anthropic and OpenAI research. This skill covers all major prompting methodologies: clarity, structure, examples, reasoning, and advanced patterns.

Every prompt created should be clear, specific, and optimized for the target model. </objective>

<quick_start> <workflow>

  1. Clarify purpose: What should the prompt accomplish?
  2. Identify model: Claude, GPT, or other (techniques vary slightly)
  3. Select techniques: Choose from core techniques based on task complexity
  4. Structure content: Use XML tags (Claude) or markdown (GPT) for organization
  5. Add examples: Include few-shot examples for format-sensitive outputs
  6. Define success: Add clear success criteria
  7. Test and iterate: Refine based on outputs </workflow>

<core_structure> Every effective prompt has:

<context>
Background information the model needs
</context>

<task>
Clear, specific instruction of what to do
</task>

<requirements>
- Specific constraints
- Output format
- Edge cases to handle
</requirements>

<examples>
Input/output pairs demonstrating expected behavior
</examples>

<success_criteria>
How to know the task was completed correctly
</success_criteria>

</core_structure> </quick_start>

<core_techniques> <technique name="be_clear_and_direct"> Priority: Always apply first

  • State exactly what you want
  • Avoid ambiguous language ("try to", "maybe", "generally")
  • Use "Always..." or "Never..." instead of "Should probably..."
  • Provide specific output format requirements

See: references/clarity-principles.md </technique>

<technique name="use_xml_tags"> **When**: Claude prompts, complex structure needed

Claude was trained with XML tags. Use them for:

  • Separating sections: <context>, <task>, <output>
  • Wrapping data: <document>, <schema>, <example>
  • Defining boundaries: Clear start/end of sections

See: references/xml-structure.md </technique>

<technique name="few_shot_examples"> **When**: Output format matters, pattern recognition easier than rules

Provide 2-4 input/output pairs:

<examples>
<example number="1">
<input>User clicked signup button</input>
<output>track('signup_initiated', { source: 'homepage' })</output>
</example>
</examples>

See: references/few-shot-patterns.md </technique>

<technique name="chain_of_thought"> **When**: Complex reasoning, math, multi-step analysis

Add explicit reasoning instructions:

  • "Think step by step before answering"
  • "First analyze X, then consider Y, finally conclude Z"
  • Use <thinking> tags for Claude's extended thinking

See: references/reasoning-techniques.md </technique>

<technique name="system_prompts"> **When**: Setting persistent behavior, role, constraints

System prompts set the foundation:

  • Define Claude's role and expertise
  • Set constraints and boundaries
  • Establish output format expectations

See: references/system-prompt-patterns.md </technique>

<technique name="prefilling"> **When**: Enforcing specific output format (Claude-specific)

Start Claude's response to guide format:

Assistant: {"result":

Forces JSON output without preamble. </technique>

<technique name="context_management"> **When**: Long-running tasks, multi-session work, large context usage

For Claude 4.5 with context awareness:

  • Inform about automatic context compaction
  • Add state tracking (JSON, progress.txt, git)
  • Use test-first patterns for complex implementations
  • Enable autonomous task completion across context windows

See: references/context-management.md </technique> </core_techniques>

<prompt_creation_workflow> <step_0> Gather requirements using AskUserQuestion:

  1. What is the prompt's purpose?

    • Generate content
    • Analyze/extract information
    • Transform data
    • Make decisions
    • Other
  2. What model will use this prompt?

    • Claude (use XML tags)
    • GPT (use markdown structure)
    • Other/multiple
  3. What complexity level?

    • Simple (single task, clear output)
    • Medium (multiple steps, some nuance)
    • Complex (reasoning, edge cases, validation)
  4. Output format requirements?

    • Free text
    • JSON/structured data
    • Code
    • Specific template </step_0>

<step_1> Draft the prompt using this template:

<context>
[Background the model needs to understand the task]
</context>

<objective>
[Clear statement of what to accomplish]
</objective>

<instructions>
[Step-by-step process, numbered if sequential]
</instructions>

<constraints>
[Rules, limitations, things to avoid]
</constraints>

<output_format>
[Exact structure of expected output]
</output_format>

<examples>
[2-4 input/output pairs if format matters]
</examples>

<success_criteria>
[How to verify the task was done correctly]
</success_criteria>

</step_1>

<step_2> Apply relevant techniques based on complexity:

  • Simple: Clear instructions + output format
  • Medium: Add examples + constraints
  • Complex: Add reasoning steps + edge cases + validation </step_2>

<step_3> Review checklist:

  • Is the task clearly stated?
  • Are ambiguous words removed?
  • Is output format specified?
  • Are edge cases addressed?
  • Would a person with no context understand it? </step_3> </prompt_creation_workflow>

<anti_patterns> <pitfall name="vague_instructions"> ❌ "Help with the data" ✅ "Extract email addresses from the CSV, remove duplicates, output as JSON array" </pitfall>

<pitfall name="negative_prompting"> ❌ "Don't use technical jargon" ✅ "Write in plain language suitable for a non-technical audience" </pitfall> <pitfall name="no_examples"> ❌ Describing format in words only ✅ Showing 2-3 concrete input/output examples </pitfall> <pitfall name="missing_edge_cases"> ❌ "Process the file" ✅ "Process the file. If empty, return []. If malformed, return error with line number." </pitfall>

See: references/anti-patterns.md </anti_patterns>

<reference_guides> Core principles:

Techniques:

Best practices by vendor:

Quality:

<success_criteria> A well-crafted prompt has:

  • Clear, unambiguous objective
  • Specific output format with example
  • Relevant context provided
  • Edge cases addressed
  • No vague language (try, maybe, generally)
  • Appropriate technique selection for task complexity
  • Success criteria defined </success_criteria>

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/create-prompt

関連スキル

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る