MCP HubMCP Hub
スキル一覧に戻る

tracking-service-reliability

jeremylongshore
更新日 Yesterday
68 閲覧
712
74
712
GitHubで表示
メタai

について

このスキルは、開発者がSLA、SLI、SLOなどのサービス信頼性メトリクスを定義し監視することを支援します。ユーザーがエラーバジェットについて議論したり、サービスパフォーマンスの追跡を必要とする際に起動し、主要なメトリクスと目標の設定を可能にします。このスキルは設定された目標に対する監視を自動化し、問題を事前に特定します。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/tracking-service-reliability

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Overview

This skill provides a structured approach to defining and tracking SLAs, SLIs, and SLOs, which are essential for ensuring service reliability. It automates the process of setting performance targets and monitoring actual performance, enabling proactive identification and resolution of potential issues.

How It Works

  1. SLI Definition: The skill guides the user to define Service Level Indicators (SLIs) such as availability, latency, error rate, and throughput.
  2. SLO Target Setting: The skill assists in setting Service Level Objectives (SLOs) by establishing target values for the defined SLIs (e.g., 99.9% availability).
  3. SLA Establishment: The skill helps in formalizing Service Level Agreements (SLAs), which are customer-facing commitments based on the defined SLOs.

When to Use This Skill

This skill activates when you need to:

  • Define SLAs, SLIs, and SLOs for a service.
  • Track service performance against defined objectives.
  • Calculate error budgets based on SLOs.

Examples

Example 1: Defining SLOs for a New Service

User request: "Create SLOs for our new payment processing service."

The skill will:

  1. Prompt the user to define SLIs (e.g., latency, error rate).
  2. Assist in setting target values for each SLI (e.g., p99 latency < 100ms, error rate < 0.01%).

Example 2: Tracking Availability

User request: "Track the availability SLI for the database service."

The skill will:

  1. Guide the user in setting up the tracking of the availability SLI.
  2. Visualize availability performance against the defined SLO.

Best Practices

  • Granularity: Define SLIs that are specific and measurable.
  • Realism: Set SLOs that are challenging but achievable.
  • Alignment: Ensure SLAs align with the defined SLOs and business requirements.

Integration

This skill can be integrated with monitoring tools to automatically collect SLI data and track performance against SLOs. It can also be used in conjunction with alerting systems to trigger notifications when SLO violations occur.

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: backups/skills-batch-20251204-000554/plugins/performance/sla-sli-tracker/skills/sla-sli-tracker
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る