Meta-Pattern Recognition
について
このスキルは、3つ以上の異なる領域で繰り返し現れるパターンを特定し、普遍的な原理を抽出します。開発者が様々な文脈で同じパターンに気付いたり、問題解決において既視感を経験したりした際に使用するように設計されています。キャッシングやキューイングなどのパターンを抽象化し、その核心原理を新たなシステムに応用することを支援します。
クイックインストール
Claude Code
推奨/plugin add https://github.com/Elios-FPT/EliosCodePracticeServicegit clone https://github.com/Elios-FPT/EliosCodePracticeService.git ~/.claude/skills/Meta-Pattern RecognitionこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Meta-Pattern Recognition
Overview
When the same pattern appears in 3+ domains, it's probably a universal principle worth extracting.
Core principle: Find patterns in how patterns emerge.
Quick Reference
| Pattern Appears In | Abstract Form | Where Else? |
|---|---|---|
| CPU/DB/HTTP/DNS caching | Store frequently-accessed data closer | LLM prompt caching, CDN |
| Layering (network/storage/compute) | Separate concerns into abstraction levels | Architecture, organization |
| Queuing (message/task/request) | Decouple producer from consumer with buffer | Event systems, async processing |
| Pooling (connection/thread/object) | Reuse expensive resources | Memory management, resource governance |
Process
- Spot repetition - See same shape in 3+ places
- Extract abstract form - Describe independent of any domain
- Identify variations - How does it adapt per domain?
- Check applicability - Where else might this help?
Example
Pattern spotted: Rate limiting in API throttling, traffic shaping, circuit breakers, admission control
Abstract form: Bound resource consumption to prevent exhaustion
Variation points: What resource, what limit, what happens when exceeded
New application: LLM token budgets (same pattern - prevent context window exhaustion)
Red Flags You're Missing Meta-Patterns
- "This problem is unique" (probably not)
- Multiple teams independently solving "different" problems identically
- Reinventing wheels across domains
- "Haven't we done something like this?" (yes, find it)
Remember
- 3+ domains = likely universal
- Abstract form reveals new applications
- Variations show adaptation points
- Universal patterns are battle-tested
GitHub リポジトリ
関連スキル
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
langchain
メタLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
