MCP HubMCP Hub
スキル一覧に戻る

copilot-spark

majiayu000
更新日 2 days ago
22 閲覧
58
9
58
GitHubで表示
メタapidesign

について

このスキルは、GitHub Copilot Sparkを使用して自然言語の説明から動作するWebアプリケーションを生成します。迅速なプロトタイピング、コーディング概念の教育、本格的な開発前のアイデア探索を目的としています。主な機能には、アプリケーションの説明をコードに変換することや、ローコード/ノーコードのワークフローを促進することが含まれます。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/copilot-spark

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

GitHub Copilot Spark Skill

AI-powered app builder for rapid prototyping and teaching

GitHub Copilot Spark transforms natural language descriptions into working web applications. Use it to prototype ideas quickly, teach programming concepts, or bridge the gap between idea and implementation.

Prerequisites

  • GitHub Account: With Copilot access
  • Spark Access: Visit spark.github.com or use gh spark CLI
  • Browser: Modern browser for the Spark editor

Quick Reference

Core Workflows

WorkflowDescriptionBest For
PrototypeDescribe app → Get working codeRapid iteration, proof of concept
TeachExplain concepts through buildingOnboarding, learning
ExploreTry different approaches quicklyArchitecture decisions
BridgeMove from Spark to production codeHandoff to development

Key Commands

ActionMethod
Create new appDescribe in natural language
Modify app"Change the button to blue"
Add feature"Add a dark mode toggle"
Export codeDownload or copy generated code
Share prototypeGenerate shareable link

Use Cases

1. Rapid Prototyping

User: "Create a todo list app with categories and due dates"

Spark generates:
- React components for todo items
- Category filtering
- Date picker for due dates
- Local storage persistence

2. Teaching Non-Coders

User: "Show me how a login form works"

Spark creates:
- Email/password form
- Basic validation
- Submit handling
- Explains each part

3. Architecture Exploration

User: "Build a dashboard with charts showing sales data"

Spark provides:
- Chart component options
- Data structure suggestions
- Layout alternatives

Spark to Production Workflow

Step 1: Prototype in Spark

Describe your idea → Iterate until satisfied → Export code

Step 2: Review Generated Code

# Spark exports typically include:
- src/components/     # React components
- src/styles/        # CSS/styling
- src/utils/         # Helper functions
- package.json       # Dependencies

Step 3: Integrate with Production Codebase

# Copy relevant components
cp -r spark-export/src/components/* ./src/components/spark-prototype/

# Review and refactor for production standards
# - Add TypeScript types
# - Add error handling
# - Add tests
# - Follow project conventions

Step 4: Production Hardening Checklist

  • Add TypeScript types/interfaces
  • Implement proper error handling
  • Add unit and integration tests
  • Apply project styling conventions
  • Add accessibility attributes
  • Implement proper state management
  • Add loading and error states
  • Security review (input validation, XSS prevention)

Best Practices

Effective Prompts

✅ Good Prompts❌ Avoid
"Todo app with drag-and-drop reordering""Make an app"
"Dashboard showing user activity metrics""Analytics thing"
"Form with email validation and submit""Some inputs"
"Card grid with hover effects""Display stuff"

Iteration Tips

  1. Start simple: Begin with core functionality
  2. Iterate incrementally: Add features one at a time
  3. Be specific: "Blue button" vs "styled button"
  4. Reference examples: "Like Twitter's compose box"

Teaching Approach

  1. Show, don't tell: Let Spark generate, then explain
  2. Break it down: Ask for one concept at a time
  3. Compare approaches: "Show me two ways to do this"
  4. Explain the why: Ask Spark to comment the code

Integration with This Repository

Using Spark Prototypes

# 1. Create prototype in Spark
# 2. Export to local directory
# 3. Use the bridge prompt to integrate

/spark-bridge --source ./spark-export --target ./src/features/new-feature

Related Resources

ResourcePurpose
@spark-prototyperAgent for guided prototyping
/spark-prototypeQuick prototype prompt
/spark-teachTeaching/onboarding prompt
reference.mdDetailed command reference

Limitations

  • Complexity: Best for simple to medium complexity apps
  • Backend: Limited backend/API generation
  • State: Basic state management only
  • Testing: No test generation
  • Types: Limited TypeScript support

When to Use Spark vs. Traditional Development

Use Spark WhenUse Traditional Dev When
Exploring ideasProduction code
Quick demosComplex logic
Teaching conceptsTeam collaboration
UI prototypingBackend services
Client presentationsSecurity-critical

Related Documentation

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/copilot-spark

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る