MCP HubMCP Hub
スキル一覧に戻る

concurrent-debugging-strategies

majiayu000
更新日 Yesterday
15 閲覧
58
9
58
GitHubで表示
テストautomation

について

このスキルは、React 18のコンカレントレンダリングにおける高度なデバッグ技術を提供し、特に非決定的なスケジューリング環境でのバグの再現と分離に役立ちます。開発者が決定的なリプレイハーネスを作成し、ティアリングされたレンダリングアーティファクトをトレースし、レンダリングフェーズと状態を関連付けることを可能にします。コンカレントReactアプリケーションにおける競合状態や視覚的不整合などの複雑な並行処理の問題をデバッグする必要がある場合にご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/concurrent-debugging-strategies

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Concurrent Debugging Strategies (React 18)

Summary

Develop advanced debugging workflows for concurrent rendering, including reproducibility under non-deterministic scheduling.

Key Capabilities

  • Reproduce concurrency bugs using controlled scheduler instrumentation.
  • Isolate torn render artifacts with boundary tracing.
  • Correlate render phases with state snapshots.

PhD-Level Challenges

  • Construct a deterministic replay harness for concurrent updates.
  • Formalize minimal counterexamples for concurrency regressions.
  • Build tooling to visualize lane interactions in real time.

Acceptance Criteria

  • Provide a repro harness with deterministic scheduling.
  • Demonstrate isolation of a concurrency bug to a single boundary.
  • Document a debugging protocol with evidence.

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/concurrent-debugging-strategies

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

Algorithmic Art Generation

メタ

This skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.

スキルを見る