MCP HubMCP Hub
スキル一覧に戻る

prompting

danielmiessler
更新日 Today
67 閲覧
14
1
14
GitHubで表示
その他ai

について

このスキルは、Claudeを活用する開発者向けにAnthropicのプロンプトおよびコンテキスト設計のベストプラクティスを提供します。明確性、構造化、段階的発見といった原則を通じてAIエージェントのパフォーマンスを最適化し、コンテキストを有限リソースとして扱う方法を支援します。プロンプトエンジニアリング、コンテキスト管理、LLMインタラクションにおける信号対雑音比の改善に関するガイダンスとしてご活用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/danielmiessler/PAIPlugin
Git クローン代替
git clone https://github.com/danielmiessler/PAIPlugin.git ~/.claude/skills/prompting

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Prompting Skill

When to Activate This Skill

  • Prompt engineering questions
  • Context engineering guidance
  • AI agent design
  • Prompt structure help
  • Best practices for LLM prompts
  • Agent configuration

Core Philosophy

Context engineering = Curating optimal set of tokens during LLM inference

Primary Goal: Find smallest possible set of high-signal tokens that maximize desired outcomes

Key Principles

1. Context is Finite Resource

  • LLMs have limited "attention budget"
  • Performance degrades as context grows
  • Every token depletes capacity
  • Treat context as precious

2. Optimize Signal-to-Noise

  • Clear, direct language over verbose explanations
  • Remove redundant information
  • Focus on high-value tokens

3. Progressive Discovery

  • Use lightweight identifiers vs full data dumps
  • Load detailed info dynamically when needed
  • Just-in-time information loading

Markdown Structure Standards

Use clear semantic sections:

  • Background Information: Minimal essential context
  • Instructions: Imperative voice, specific, actionable
  • Examples: Show don't tell, concise, representative
  • Constraints: Boundaries, limitations, success criteria

Writing Style

Clarity Over Completeness

✅ Good: "Validate input before processing" ❌ Bad: "You should always make sure to validate..."

Be Direct

✅ Good: "Use calculate_tax tool with amount and jurisdiction" ❌ Bad: "You might want to consider using..."

Use Structured Lists

✅ Good: Bulleted constraints ❌ Bad: Paragraph of requirements

Context Management

Just-in-Time Loading

Don't load full data dumps - use references and load when needed

Structured Note-Taking

Persist important info outside context window

Sub-Agent Architecture

Delegate subtasks to specialized agents with minimal context

Best Practices Checklist

  • Uses Markdown headers for organization
  • Clear, direct, minimal language
  • No redundant information
  • Actionable instructions
  • Concrete examples
  • Clear constraints
  • Just-in-time loading when appropriate

Anti-Patterns

❌ Verbose explanations ❌ Historical context dumping ❌ Overlapping tool definitions ❌ Premature information loading ❌ Vague instructions ("might", "could", "should")

Supplementary Resources

For full standards: read ${PAI_DIR}/skills/prompting/CLAUDE.md

Based On

Anthropic's "Effective Context Engineering for AI Agents"

GitHub リポジトリ

danielmiessler/PAIPlugin
パス: skills/prompting

関連スキル

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る