prompting
について
このスキルは、Claudeを活用する開発者向けにAnthropicのプロンプトおよびコンテキスト設計のベストプラクティスを提供します。明確性、構造化、段階的発見といった原則を通じてAIエージェントのパフォーマンスを最適化し、コンテキストを有限リソースとして扱う方法を支援します。プロンプトエンジニアリング、コンテキスト管理、LLMインタラクションにおける信号対雑音比の改善に関するガイダンスとしてご活用ください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/danielmiessler/PAIPlugingit clone https://github.com/danielmiessler/PAIPlugin.git ~/.claude/skills/promptingこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Prompting Skill
When to Activate This Skill
- Prompt engineering questions
- Context engineering guidance
- AI agent design
- Prompt structure help
- Best practices for LLM prompts
- Agent configuration
Core Philosophy
Context engineering = Curating optimal set of tokens during LLM inference
Primary Goal: Find smallest possible set of high-signal tokens that maximize desired outcomes
Key Principles
1. Context is Finite Resource
- LLMs have limited "attention budget"
- Performance degrades as context grows
- Every token depletes capacity
- Treat context as precious
2. Optimize Signal-to-Noise
- Clear, direct language over verbose explanations
- Remove redundant information
- Focus on high-value tokens
3. Progressive Discovery
- Use lightweight identifiers vs full data dumps
- Load detailed info dynamically when needed
- Just-in-time information loading
Markdown Structure Standards
Use clear semantic sections:
- Background Information: Minimal essential context
- Instructions: Imperative voice, specific, actionable
- Examples: Show don't tell, concise, representative
- Constraints: Boundaries, limitations, success criteria
Writing Style
Clarity Over Completeness
✅ Good: "Validate input before processing" ❌ Bad: "You should always make sure to validate..."
Be Direct
✅ Good: "Use calculate_tax tool with amount and jurisdiction" ❌ Bad: "You might want to consider using..."
Use Structured Lists
✅ Good: Bulleted constraints ❌ Bad: Paragraph of requirements
Context Management
Just-in-Time Loading
Don't load full data dumps - use references and load when needed
Structured Note-Taking
Persist important info outside context window
Sub-Agent Architecture
Delegate subtasks to specialized agents with minimal context
Best Practices Checklist
- Uses Markdown headers for organization
- Clear, direct, minimal language
- No redundant information
- Actionable instructions
- Concrete examples
- Clear constraints
- Just-in-time loading when appropriate
Anti-Patterns
❌ Verbose explanations ❌ Historical context dumping ❌ Overlapping tool definitions ❌ Premature information loading ❌ Vague instructions ("might", "could", "should")
Supplementary Resources
For full standards: read ${PAI_DIR}/skills/prompting/CLAUDE.md
Based On
Anthropic's "Effective Context Engineering for AI Agents"
GitHub リポジトリ
関連スキル
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
langchain
メタLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
