MCP HubMCP Hub
スキル一覧に戻る

data-export-pdf

majiayu000
更新日 Today
21 閲覧
58
9
58
GitHubで表示
メタpdfaidata

について

このスキルは、ローカルのreportlabライブラリを使用して、テキスト、表、埋め込み画像を含むプロフェッショナルなPDFレポートを生成します。分析サマリーの作成、フォーマットされた文書の作成、または複数の結果を単一の文書に統合するのに理想的です。主要な特徴は、ローカルで動作し、あらゆるLLMプロバイダーと互換性があるという普遍的な互換性です。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/data-export-pdf

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

PDF Report Generation (Universal)

Overview

This skill enables you to create professional PDF reports containing analysis summaries, formatted tables, and embedded visualizations. Unlike cloud-hosted solutions, this skill uses the reportlab Python library and executes locally in your environment, making it compatible with ALL LLM providers including GPT, Gemini, Claude, DeepSeek, and Qwen.

When to Use This Skill

  • Generate analysis reports with text and tables
  • Create summary PDFs with embedded plots
  • Export formatted documentation
  • Produce publication-ready supplementary materials
  • Combine multiple analysis results into a single document

How to Use

Step 1: Import Required Libraries

from reportlab.lib.pagesizes import letter, A4
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, PageBreak, Image
from reportlab.lib.enums import TA_CENTER, TA_LEFT, TA_JUSTIFY
from datetime import datetime
import matplotlib.pyplot as plt

Step 2: Create Basic PDF Document

# Create PDF file
pdf_filename = "analysis_report.pdf"
doc = SimpleDocTemplate(pdf_filename, pagesize=letter)
story = []  # Container for PDF elements

# Get default styles
styles = getSampleStyleSheet()
title_style = styles['Title']
heading_style = styles['Heading1']
normal_style = styles['Normal']

# Add title
story.append(Paragraph("Analysis Report", title_style))
story.append(Spacer(1, 0.2*inch))

# Add date
date_text = f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M')}"
story.append(Paragraph(date_text, normal_style))
story.append(Spacer(1, 0.3*inch))

# Build PDF
doc.build(story)
print(f"✅ PDF saved to: {pdf_filename}")

Step 3: Add Text Content

story = []

# Title
story.append(Paragraph("Single-Cell RNA-seq Analysis Report", title_style))
story.append(Spacer(1, 0.2*inch))

# Section heading
story.append(Paragraph("1. Overview", heading_style))
story.append(Spacer(1, 0.1*inch))

# Paragraph text
overview_text = """
This report summarizes the single-cell RNA-seq analysis performed on the dataset.
The analysis includes quality control, normalization, dimensionality reduction,
clustering, and cell type annotation.
"""
story.append(Paragraph(overview_text, normal_style))
story.append(Spacer(1, 0.2*inch))

Step 4: Add Tables

# Prepare table data
table_data = [
    ['Metric', 'Value'],  # Header
    ['Total Cells', '5,000'],
    ['Total Genes', '20,000'],
    ['Mean Genes/Cell', '2,500'],
    ['Median UMIs/Cell', '10,000']
]

# Create table
table = Table(table_data, colWidths=[2.5*inch, 2*inch])

# Style table
table.setStyle(TableStyle([
    # Header styling
    ('BACKGROUND', (0, 0), (-1, 0), colors.grey),
    ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
    ('ALIGN', (0, 0), (-1, -1), 'CENTER'),
    ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
    ('FONTSIZE', (0, 0), (-1, 0), 12),

    # Body styling
    ('BACKGROUND', (0, 1), (-1, -1), colors.beige),
    ('GRID', (0, 0), (-1, -1), 1, colors.black),
    ('FONTNAME', (0, 1), (-1, -1), 'Helvetica'),
    ('FONTSIZE', (0, 1), (-1, -1), 10),
]))

story.append(table)
story.append(Spacer(1, 0.3*inch))

Step 5: Embed Images/Plots

# Save matplotlib figure first
fig, ax = plt.subplots(figsize=(6, 4))
# ... create your plot ...
plot_filename = "temp_plot.png"
fig.savefig(plot_filename, dpi=150, bbox_inches='tight')
plt.close(fig)

# Add image to PDF
story.append(Paragraph("2. UMAP Visualization", heading_style))
story.append(Spacer(1, 0.1*inch))
img = Image(plot_filename, width=4*inch, height=3*inch)
story.append(img)
story.append(Spacer(1, 0.2*inch))

Complete Example: Analysis Report

from reportlab.lib.pagesizes import letter
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.units import inch
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, Image
from datetime import datetime
import matplotlib.pyplot as plt
import pandas as pd

def create_analysis_report(adata, output_path="analysis_report.pdf"):
    """Create comprehensive PDF analysis report"""

    # Initialize PDF
    doc = SimpleDocTemplate(output_path, pagesize=letter)
    story = []
    styles = getSampleStyleSheet()

    # Title
    story.append(Paragraph("Single-Cell RNA-seq Analysis Report", styles['Title']))
    story.append(Spacer(1, 0.2*inch))
    story.append(Paragraph(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M')}", styles['Normal']))
    story.append(Spacer(1, 0.3*inch))

    # Overview
    story.append(Paragraph("1. Dataset Overview", styles['Heading1']))
    story.append(Spacer(1, 0.1*inch))

    overview_data = [
        ['Metric', 'Value'],
        ['Total Cells', f'{adata.n_obs:,}'],
        ['Total Genes', f'{adata.n_vars:,}'],
        ['Observations', ', '.join(adata.obs.columns[:5].tolist())],
    ]

    table = Table(overview_data, colWidths=[2.5*inch, 3.5*inch])
    table.setStyle(TableStyle([
        ('BACKGROUND', (0, 0), (-1, 0), colors.grey),
        ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
        ('ALIGN', (0, 0), (-1, -1), 'LEFT'),
        ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
        ('GRID', (0, 0), (-1, -1), 1, colors.black),
        ('BACKGROUND', (0, 1), (-1, -1), colors.beige),
    ]))
    story.append(table)
    story.append(Spacer(1, 0.3*inch))

    # Cluster distribution
    if 'clusters' in adata.obs:
        story.append(Paragraph("2. Cluster Distribution", styles['Heading1']))
        story.append(Spacer(1, 0.1*inch))

        cluster_counts = adata.obs['clusters'].value_counts().sort_index()
        cluster_data = [['Cluster', 'Cell Count', 'Percentage']]
        total_cells = adata.n_obs

        for cluster, count in cluster_counts.items():
            percentage = (count / total_cells) * 100
            cluster_data.append([str(cluster), str(count), f'{percentage:.1f}%'])

        table = Table(cluster_data, colWidths=[1.5*inch, 1.5*inch, 1.5*inch])
        table.setStyle(TableStyle([
            ('BACKGROUND', (0, 0), (-1, 0), colors.grey),
            ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
            ('ALIGN', (0, 0), (-1, -1), 'CENTER'),
            ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
            ('GRID', (0, 0), (-1, -1), 1, colors.black),
            ('BACKGROUND', (0, 1), (-1, -1), colors.lightblue),
        ]))
        story.append(table)
        story.append(Spacer(1, 0.3*inch))

    # Visualization (if UMAP exists)
    if 'X_umap' in adata.obsm:
        story.append(Paragraph("3. UMAP Visualization", styles['Heading1']))
        story.append(Spacer(1, 0.1*inch))

        # Create UMAP plot
        fig, ax = plt.subplots(figsize=(6, 5))
        scatter = ax.scatter(
            adata.obsm['X_umap'][:, 0],
            adata.obsm['X_umap'][:, 1],
            c=adata.obs['clusters'].astype('category').cat.codes if 'clusters' in adata.obs else 'blue',
            s=5, alpha=0.5
        )
        ax.set_xlabel('UMAP1')
        ax.set_ylabel('UMAP2')
        ax.set_title('UMAP Projection')

        plot_path = 'temp_umap.png'
        fig.savefig(plot_path, dpi=150, bbox_inches='tight')
        plt.close(fig)

        img = Image(plot_path, width=5*inch, height=4*inch)
        story.append(img)

    # Build PDF
    doc.build(story)
    print(f"✅ PDF report saved to: {output_path}")

    return output_path

# Usage
create_analysis_report(adata, "my_analysis_report.pdf")

Best Practices

  1. Page Size: Use letter (US) or A4 (international) for standard documents
  2. Margins: SimpleDocTemplate has default margins (1 inch); adjust with leftMargin, rightMargin, etc.
  3. Images: Save matplotlib figures at 150-300 DPI for good quality
  4. Tables: Keep column counts reasonable (4-6 columns max for readability)
  5. File Cleanup: Delete temporary image files after PDF creation
  6. Memory: For large documents, build in sections to manage memory

Advanced Features

Custom Page Header/Footer

from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas

def add_header_footer(canvas_obj, doc):
    canvas_obj.saveState()
    # Header
    canvas_obj.setFont('Helvetica', 9)
    canvas_obj.drawString(inch, letter[1] - 0.5*inch, "Analysis Report")
    # Footer
    canvas_obj.drawString(inch, 0.5*inch, f"Page {doc.page}")
    canvas_obj.restoreState()

doc = SimpleDocTemplate(pdf_filename, pagesize=letter)
doc.build(story, onFirstPage=add_header_footer, onLaterPages=add_header_footer)

Multi-Column Layout

from reportlab.platypus import Frame, PageTemplate

frame1 = Frame(doc.leftMargin, doc.bottomMargin, doc.width/2-6, doc.height, id='col1')
frame2 = Frame(doc.leftMargin+doc.width/2+6, doc.bottomMargin, doc.width/2-6, doc.height, id='col2')

doc.addPageTemplates([PageTemplate(id='TwoCol', frames=[frame1, frame2])])

Color-Coded Tables

# Highlight significant results
for i, row in enumerate(deg_results):
    if row['qvalue'] < 0.05:
        table.setStyle(TableStyle([
            ('BACKGROUND', (0, i+1), (-1, i+1), colors.yellow)
        ]))

Common Use Cases

QC Report

qc_metrics = {
    'Total Cells': adata.n_obs,
    'Median Genes/Cell': int(adata.obs['n_genes'].median()),
    'Median UMIs/Cell': int(adata.obs['n_counts'].median()),
    'Mean Mito %': f"{adata.obs['percent_mito'].mean():.2f}%"
}

table_data = [['Metric', 'Value']] + [[k, str(v)] for k, v in qc_metrics.items()]
# ... create table as shown above

DEG Summary Table

# Top 10 upregulated genes
top_genes = deg_df.nlargest(10, 'log2FC')[['gene', 'log2FC', 'qvalue']]
table_data = [['Gene', 'log2FC', 'Q-value']]
for _, row in top_genes.iterrows():
    table_data.append([row['gene'], f"{row['log2FC']:.2f}", f"{row['qvalue']:.2e}"])

Troubleshooting

Issue: "reportlab not found"

Solution:

import subprocess
subprocess.check_call(['pip', 'install', 'reportlab'])

Issue: "Image not found"

Solution: Ensure image path is correct and file exists before adding to PDF:

import os
if os.path.exists(plot_filename):
    img = Image(plot_filename, width=4*inch, height=3*inch)
    story.append(img)

Issue: "Table exceeds page width"

Solution: Reduce column widths or font size:

table = Table(data, colWidths=[1.5*inch, 1.5*inch, 2*inch])
table.setStyle(TableStyle([('FONTSIZE', (0, 0), (-1, -1), 8)]))

Technical Notes

  • Library: Uses reportlab (pure Python, widely supported)
  • Execution: Runs locally in the agent's sandbox
  • Compatibility: Works with ALL LLM providers (GPT, Gemini, Claude, DeepSeek, Qwen, etc.)
  • File Size: Text-heavy PDFs are small (<1MB); image-heavy PDFs can be 5-20MB
  • Performance: Typical report generation takes 1-3 seconds

References

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/data-export-pdf

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る