Remembering Conversations
について
このスキルは、過去のClaude Code会話を意味的・テキストベースで検索し、事実、パターン、意思決定を取得できるようにします。開発者は、パートナーが過去の議論を参照する場合や、よくある問題のデバッグ時に解決策を再考するのを避けるために使用すべきです。これは「再発明前に検索」の原則で動作し、効率的なコンテキスト管理のためにサブエージェントの使用が必要です。
クイックインストール
Claude Code
推奨/plugin add https://github.com/lifangda/claude-pluginsgit clone https://github.com/lifangda/claude-plugins.git ~/.claude/skills/Remembering ConversationsこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Remembering Conversations
Search archived conversations using semantic similarity or exact text matching.
Core principle: Search before reinventing.
Announce: "I'm searching previous conversations for [topic]."
Setup: See INDEXING.md
When to Use
Search when:
- Your human partner mentions "we discussed this before"
- Debugging similar issues
- Looking for architectural decisions or patterns
- Before implementing something familiar
Don't search when:
- Info in current conversation
- Question about current codebase (use Grep/Read)
In-Session Use
Always use subagents (50-100x context savings). See skills/using-skills for workflow.
Manual/CLI use: Direct search (below) for humans outside Claude Code sessions.
Direct Search (Manual/CLI)
Tool: ${SUPERPOWERS_SKILLS_ROOT}/skills/collaboration/remembering-conversations/tool/search-conversations
Modes:
search-conversations "query" # Vector similarity (default)
search-conversations --text "exact" # Exact string match
search-conversations --both "query" # Both modes
Flags:
--after YYYY-MM-DD # Filter by date
--before YYYY-MM-DD # Filter by date
--limit N # Max results (default: 10)
--help # Full usage
Examples:
# Semantic search
search-conversations "React Router authentication errors"
# Find git SHA
search-conversations --text "a1b2c3d4"
# Time range
search-conversations --after 2025-09-01 "refactoring"
Returns: project, date, conversation summary, matched exchange, similarity %, file path.
For details: Run search-conversations --help
GitHub リポジトリ
関連スキル
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
langchain
メタLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
