MCP HubMCP Hub
スキル一覧に戻る

configuring-auto-scaling-policies

jeremylongshore
更新日 Today
79 閲覧
712
74
712
GitHubで表示
メタaidesign

について

このスキルは、ユーザーの要件に基づいてアプリケーションおよびインフラストラクチャ向けの本番環境対応の自動スケーリング設定を生成します。ユーザーが自動スケーリング、HPA、または動的スケーリングの必要性について言及した際に、様々なプラットフォーム向けの完全な設定コードを提供します。このスキルは、出力において拡張性とセキュリティに関するベストプラクティスを実装しています。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/configuring-auto-scaling-policies

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Overview

This skill empowers Claude to create and configure auto-scaling policies tailored to specific application and infrastructure needs. It streamlines the process of setting up dynamic resource allocation, ensuring optimal performance and resilience.

How It Works

  1. Requirement Gathering: Claude analyzes the user's request to understand the specific auto-scaling requirements, including target metrics (CPU, memory, etc.), scaling thresholds, and desired platform.
  2. Configuration Generation: Based on the gathered requirements, Claude generates a production-ready auto-scaling configuration, incorporating best practices for security and scalability. This includes HPA configurations, scaling policies, and necessary infrastructure setup code.
  3. Code Presentation: Claude presents the generated configuration code to the user, ready for deployment.

When to Use This Skill

This skill activates when you need to:

  • Configure auto-scaling for a Kubernetes deployment.
  • Set up dynamic scaling policies based on CPU or memory utilization.
  • Implement high availability and fault tolerance through auto-scaling.

Examples

Example 1: Scaling a Web Application

User request: "I need to configure auto-scaling for my web application in Kubernetes based on CPU utilization. Scale up when CPU usage exceeds 70%."

The skill will:

  1. Analyze the request and identify the need for a Kubernetes HPA configuration.
  2. Generate an HPA configuration file that scales the web application based on CPU utilization, with a target threshold of 70%.

Example 2: Scaling Infrastructure Based on Load

User request: "Configure auto-scaling for my infrastructure to handle peak loads during business hours. Scale up based on the number of incoming requests."

The skill will:

  1. Analyze the request and determine the need for infrastructure-level auto-scaling policies.
  2. Generate configuration code for scaling the infrastructure based on the number of incoming requests, considering peak load times.

Best Practices

  • Monitoring: Ensure proper monitoring is in place to track the performance metrics used for auto-scaling decisions.
  • Threshold Setting: Carefully choose scaling thresholds to avoid excessive scaling or under-provisioning.
  • Testing: Thoroughly test the auto-scaling configuration to ensure it behaves as expected under various load conditions.

Integration

This skill can be used in conjunction with other DevOps plugins to automate the entire deployment pipeline, from code generation to infrastructure provisioning.

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: backups/skills-batch-20251204-000554/plugins/devops/auto-scaling-configurator/skills/auto-scaling-configurator
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る