phoenix-observability
About
phoenix-observability is an open-source platform for tracing, evaluating, and monitoring LLM applications. Use it for debugging with detailed traces, running dataset evaluations, and monitoring production systems in real-time. It offers self-hosted observability with features like experiment pipelines and OpenTelemetry integration.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/phoenix-observabilityCopy and paste this command in Claude Code to install this skill
Documentation
Phoenix - AI Observability Platform
Open-source AI observability and evaluation platform for LLM applications with tracing, evaluation, datasets, experiments, and real-time monitoring.
When to use Phoenix
Use Phoenix when:
- Debugging LLM application issues with detailed traces
- Running systematic evaluations on datasets
- Monitoring production LLM systems in real-time
- Building experiment pipelines for prompt/model comparison
- Self-hosted observability without vendor lock-in
Key features:
- Tracing: OpenTelemetry-based trace collection for any LLM framework
- Evaluation: LLM-as-judge evaluators for quality assessment
- Datasets: Versioned test sets for regression testing
- Experiments: Compare prompts, models, and configurations
- Playground: Interactive prompt testing with multiple models
- Open-source: Self-hosted with PostgreSQL or SQLite
Use alternatives instead:
- LangSmith: Managed platform with LangChain-first integration
- Weights & Biases: Deep learning experiment tracking focus
- Arize Cloud: Managed Phoenix with enterprise features
- MLflow: General ML lifecycle, model registry focus
Quick start
Installation
pip install arize-phoenix
# With specific backends
pip install arize-phoenix[embeddings] # Embedding analysis
pip install arize-phoenix-otel # OpenTelemetry config
pip install arize-phoenix-evals # Evaluation framework
pip install arize-phoenix-client # Lightweight REST client
Launch Phoenix server
import phoenix as px
# Launch in notebook (ThreadServer mode)
session = px.launch_app()
# View UI
session.view() # Embedded iframe
print(session.url) # http://localhost:6006
Command-line server (production)
# Start Phoenix server
phoenix serve
# With PostgreSQL
export PHOENIX_SQL_DATABASE_URL="postgresql://user:pass@host/db"
phoenix serve --port 6006
Basic tracing
from phoenix.otel import register
from openinference.instrumentation.openai import OpenAIInstrumentor
# Configure OpenTelemetry with Phoenix
tracer_provider = register(
project_name="my-llm-app",
endpoint="http://localhost:6006/v1/traces"
)
# Instrument OpenAI SDK
OpenAIInstrumentor().instrument(tracer_provider=tracer_provider)
# All OpenAI calls are now traced
from openai import OpenAI
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": "Hello!"}]
)
Core concepts
Traces and spans
A trace represents a complete execution flow, while spans are individual operations within that trace.
from phoenix.otel import register
from opentelemetry import trace
# Setup tracing
tracer_provider = register(project_name="my-app")
tracer = trace.get_tracer(__name__)
# Create custom spans
with tracer.start_as_current_span("process_query") as span:
span.set_attribute("input.value", query)
# Child spans are automatically nested
with tracer.start_as_current_span("retrieve_context"):
context = retriever.search(query)
with tracer.start_as_current_span("generate_response"):
response = llm.generate(query, context)
span.set_attribute("output.value", response)
Projects
Projects organize related traces:
import os
os.environ["PHOENIX_PROJECT_NAME"] = "production-chatbot"
# Or per-trace
from phoenix.otel import register
tracer_provider = register(project_name="experiment-v2")
Framework instrumentation
OpenAI
from phoenix.otel import register
from openinference.instrumentation.openai import OpenAIInstrumentor
tracer_provider = register()
OpenAIInstrumentor().instrument(tracer_provider=tracer_provider)
LangChain
from phoenix.otel import register
from openinference.instrumentation.langchain import LangChainInstrumentor
tracer_provider = register()
LangChainInstrumentor().instrument(tracer_provider=tracer_provider)
# All LangChain operations traced
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o")
response = llm.invoke("Hello!")
LlamaIndex
from phoenix.otel import register
from openinference.instrumentation.llama_index import LlamaIndexInstrumentor
tracer_provider = register()
LlamaIndexInstrumentor().instrument(tracer_provider=tracer_provider)
Anthropic
from phoenix.otel import register
from openinference.instrumentation.anthropic import AnthropicInstrumentor
tracer_provider = register()
AnthropicInstrumentor().instrument(tracer_provider=tracer_provider)
Evaluation framework
Built-in evaluators
from phoenix.evals import (
OpenAIModel,
HallucinationEvaluator,
RelevanceEvaluator,
ToxicityEvaluator,
llm_classify
)
# Setup model for evaluation
eval_model = OpenAIModel(model="gpt-4o")
# Evaluate hallucination
hallucination_eval = HallucinationEvaluator(eval_model)
results = hallucination_eval.evaluate(
input="What is the capital of France?",
output="The capital of France is Paris.",
reference="Paris is the capital of France."
)
Custom evaluators
from phoenix.evals import llm_classify
# Define custom evaluation
def evaluate_helpfulness(input_text, output_text):
template = """
Evaluate if the response is helpful for the given question.
Question: {input}
Response: {output}
Is this response helpful? Answer 'helpful' or 'not_helpful'.
"""
result = llm_classify(
model=eval_model,
template=template,
input=input_text,
output=output_text,
rails=["helpful", "not_helpful"]
)
return result
Run evaluations on dataset
from phoenix import Client
from phoenix.evals import run_evals
client = Client()
# Get spans to evaluate
spans_df = client.get_spans_dataframe(
project_name="my-app",
filter_condition="span_kind == 'LLM'"
)
# Run evaluations
eval_results = run_evals(
dataframe=spans_df,
evaluators=[
HallucinationEvaluator(eval_model),
RelevanceEvaluator(eval_model)
],
provide_explanation=True
)
# Log results back to Phoenix
client.log_evaluations(eval_results)
Datasets and experiments
Create dataset
from phoenix import Client
client = Client()
# Create dataset
dataset = client.create_dataset(
name="qa-test-set",
description="QA evaluation dataset"
)
# Add examples
client.add_examples_to_dataset(
dataset_name="qa-test-set",
examples=[
{
"input": {"question": "What is Python?"},
"output": {"answer": "A programming language"}
},
{
"input": {"question": "What is ML?"},
"output": {"answer": "Machine learning"}
}
]
)
Run experiment
from phoenix import Client
from phoenix.experiments import run_experiment
client = Client()
def my_model(input_data):
"""Your model function."""
question = input_data["question"]
return {"answer": generate_answer(question)}
def accuracy_evaluator(input_data, output, expected):
"""Custom evaluator."""
return {
"score": 1.0 if expected["answer"].lower() in output["answer"].lower() else 0.0,
"label": "correct" if expected["answer"].lower() in output["answer"].lower() else "incorrect"
}
# Run experiment
results = run_experiment(
dataset_name="qa-test-set",
task=my_model,
evaluators=[accuracy_evaluator],
experiment_name="baseline-v1"
)
print(f"Average accuracy: {results.aggregate_metrics['accuracy']}")
Client API
Query traces and spans
from phoenix import Client
client = Client(endpoint="http://localhost:6006")
# Get spans as DataFrame
spans_df = client.get_spans_dataframe(
project_name="my-app",
filter_condition="span_kind == 'LLM'",
limit=1000
)
# Get specific span
span = client.get_span(span_id="abc123")
# Get trace
trace = client.get_trace(trace_id="xyz789")
Log feedback
from phoenix import Client
client = Client()
# Log user feedback
client.log_annotation(
span_id="abc123",
name="user_rating",
annotator_kind="HUMAN",
score=0.8,
label="helpful",
metadata={"comment": "Good response"}
)
Export data
# Export to pandas
df = client.get_spans_dataframe(project_name="my-app")
# Export traces
traces = client.list_traces(project_name="my-app")
Production deployment
Docker
docker run -p 6006:6006 arizephoenix/phoenix:latest
With PostgreSQL
# Set database URL
export PHOENIX_SQL_DATABASE_URL="postgresql://user:pass@host:5432/phoenix"
# Start server
phoenix serve --host 0.0.0.0 --port 6006
Environment variables
| Variable | Description | Default |
|---|---|---|
PHOENIX_PORT | HTTP server port | 6006 |
PHOENIX_HOST | Server bind address | 127.0.0.1 |
PHOENIX_GRPC_PORT | gRPC/OTLP port | 4317 |
PHOENIX_SQL_DATABASE_URL | Database connection | SQLite temp |
PHOENIX_WORKING_DIR | Data storage directory | OS temp |
PHOENIX_ENABLE_AUTH | Enable authentication | false |
PHOENIX_SECRET | JWT signing secret | Required if auth enabled |
With authentication
export PHOENIX_ENABLE_AUTH=true
export PHOENIX_SECRET="your-secret-key-min-32-chars"
export PHOENIX_ADMIN_SECRET="admin-bootstrap-token"
phoenix serve
Best practices
- Use projects: Separate traces by environment (dev/staging/prod)
- Add metadata: Include user IDs, session IDs for debugging
- Evaluate regularly: Run automated evaluations in CI/CD
- Version datasets: Track test set changes over time
- Monitor costs: Track token usage via Phoenix dashboards
- Self-host: Use PostgreSQL for production deployments
Common issues
Traces not appearing:
from phoenix.otel import register
# Verify endpoint
tracer_provider = register(
project_name="my-app",
endpoint="http://localhost:6006/v1/traces" # Correct endpoint
)
# Force flush
from opentelemetry import trace
trace.get_tracer_provider().force_flush()
High memory in notebook:
# Close session when done
session = px.launch_app()
# ... do work ...
session.close()
px.close_app()
Database connection issues:
# Verify PostgreSQL connection
psql $PHOENIX_SQL_DATABASE_URL -c "SELECT 1"
# Check Phoenix logs
phoenix serve --log-level debug
References
- Advanced Usage - Custom evaluators, experiments, production setup
- Troubleshooting - Common issues, debugging, performance
Resources
- Documentation: https://docs.arize.com/phoenix
- Repository: https://github.com/Arize-ai/phoenix
- Docker Hub: https://hub.docker.com/r/arizephoenix/phoenix
- Version: 12.0.0+
- License: Apache 2.0
GitHub Repository
Related Skills
railway-metrics
OtherThis skill queries Railway service metrics including CPU, memory, network, and disk usage to monitor performance and debug issues. It's triggered when developers ask about resource utilization or service performance, and requires environment and service IDs from the Railway CLI. The skill provides actionable insights through Bash commands that fetch real-time analytics data.
evaluating-code-models
MetaThis skill provides standardized benchmarking for code generation models using the BigCode Evaluation Harness. It evaluates models across major benchmarks like HumanEval and MBPP with pass@k metrics, supporting multi-language testing. Use it to objectively compare coding abilities and measure generation quality during model assessment.
langsmith-observability
MetaThis skill integrates LangSmith for LLM observability, enabling tracing, evaluation, and monitoring of AI applications. Developers should use it for debugging prompts and chains, systematically testing model outputs, and monitoring production systems. Key capabilities include performance analysis and building regression testing pipelines.
evaluating-llms-harness
TestingThis Claude Skill runs the industry-standard lm-evaluation-harness to benchmark LLMs across 60+ academic tasks like MMLU and GSM8K. Use it to rigorously compare model quality, report academic results, or track training progress. It supports evaluating models from HuggingFace, vLLM, and various APIs.
