Anomaly Detection
About
This skill detects unusual patterns and outliers in data using methods like statistical analysis, isolation forests, and autoencoders. It is designed for use cases such as fraud detection and quality monitoring to identify point, contextual, and collective anomalies. Developers can use it to implement robust anomaly detection systems directly within their workflows.
Quick Install
Claude Code
Recommended/plugin add https://github.com/aj-geddes/useful-ai-promptsgit clone https://github.com/aj-geddes/useful-ai-prompts.git ~/.claude/skills/Anomaly DetectionCopy and paste this command in Claude Code to install this skill
Documentation
Anomaly Detection
Anomaly detection identifies unusual patterns, outliers, and anomalies in data that deviate significantly from normal behavior, enabling fraud detection and system monitoring.
Detection Methods
- Statistical: Z-score, IQR, modified Z-score
- Distance-based: K-nearest neighbors, Local Outlier Factor
- Isolation: Isolation Forest
- Density-based: DBSCAN
- Deep Learning: Autoencoders, GANs
Anomaly Types
- Point Anomalies: Single unusual records
- Contextual: Unusual in specific context
- Collective: Unusual patterns in sequences
- Novel Classes: Completely new patterns
Implementation with Python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor
from sklearn.covariance import EllipticEnvelope
from scipy import stats
# Generate sample data with anomalies
np.random.seed(42)
# Normal data
n_normal = 950
normal_data = np.random.normal(100, 15, (n_normal, 2))
# Anomalies
n_anomalies = 50
anomalies = np.random.uniform(0, 200, (n_anomalies, 2))
anomalies[n_anomalies//2:, 0] = np.random.uniform(80, 120, n_anomalies//2)
anomalies[n_anomalies//2:, 1] = np.random.uniform(-50, 0, n_anomalies//2)
X = np.vstack([normal_data, anomalies])
y_true = np.hstack([np.zeros(n_normal), np.ones(n_anomalies)])
df = pd.DataFrame(X, columns=['Feature1', 'Feature2'])
df['is_anomaly_true'] = y_true
print("Data Summary:")
print(f"Normal samples: {n_normal}")
print(f"Anomalies: {n_anomalies}")
print(f"Total: {len(df)}")
# Standardize
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 1. Statistical Methods (Z-score)
z_scores = np.abs(stats.zscore(X))
z_anomaly_mask = (z_scores > 3).any(axis=1)
df['z_score_anomaly'] = z_anomaly_mask
print(f"\n1. Z-score Method:")
print(f"Anomalies detected: {z_anomaly_mask.sum()}")
print(f"Accuracy: {(z_anomaly_mask == y_true).mean():.2%}")
# 2. Isolation Forest
iso_forest = IsolationForest(contamination=n_anomalies/len(df), random_state=42)
iso_predictions = iso_forest.fit_predict(X_scaled)
iso_anomaly_mask = iso_predictions == -1
iso_scores = iso_forest.score_samples(X_scaled)
df['iso_anomaly'] = iso_anomaly_mask
df['iso_score'] = iso_scores
print(f"\n2. Isolation Forest:")
print(f"Anomalies detected: {iso_anomaly_mask.sum()}")
print(f"Accuracy: {(iso_anomaly_mask == y_true).mean():.2%}")
# 3. Local Outlier Factor
lof = LocalOutlierFactor(n_neighbors=20, contamination=n_anomalies/len(df))
lof_predictions = lof.fit_predict(X_scaled)
lof_anomaly_mask = lof_predictions == -1
lof_scores = lof.negative_outlier_factor_
df['lof_anomaly'] = lof_anomaly_mask
df['lof_score'] = lof_scores
print(f"\n3. Local Outlier Factor:")
print(f"Anomalies detected: {lof_anomaly_mask.sum()}")
print(f"Accuracy: {(lof_anomaly_mask == y_true).mean():.2%}")
# 4. Elliptic Envelope (Robust Covariance)
ee = EllipticEnvelope(contamination=n_anomalies/len(df), random_state=42)
ee_predictions = ee.fit_predict(X_scaled)
ee_anomaly_mask = ee_predictions == -1
ee_scores = ee.mahalanobis(X_scaled)
df['ee_anomaly'] = ee_anomaly_mask
df['ee_score'] = ee_scores
print(f"\n4. Elliptic Envelope:")
print(f"Anomalies detected: {ee_anomaly_mask.sum()}")
print(f"Accuracy: {(ee_anomaly_mask == y_true).mean():.2%}")
# 5. IQR Method
Q1 = np.percentile(X, 25, axis=0)
Q3 = np.percentile(X, 75, axis=0)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
iqr_anomaly_mask = ((X < lower_bound) | (X > upper_bound)).any(axis=1)
df['iqr_anomaly'] = iqr_anomaly_mask
print(f"\n5. IQR Method:")
print(f"Anomalies detected: {iqr_anomaly_mask.sum()}")
print(f"Accuracy: {(iqr_anomaly_mask == y_true).mean():.2%}")
# Visualization of anomaly detection methods
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
methods = [
(z_anomaly_mask, 'Z-score', None),
(iso_anomaly_mask, 'Isolation Forest', iso_scores),
(lof_anomaly_mask, 'LOF', lof_scores),
(ee_anomaly_mask, 'Elliptic Envelope', ee_scores),
(iqr_anomaly_mask, 'IQR', None),
]
# True anomalies
ax = axes[0, 0]
colors = ['blue' if not a else 'red' for a in y_true]
ax.scatter(df['Feature1'], df['Feature2'], c=colors, alpha=0.6, s=30)
ax.set_title('True Anomalies')
ax.set_xlabel('Feature 1')
ax.set_ylabel('Feature 2')
# Plot each method
for idx, (anomaly_mask, method_name, scores) in enumerate(methods):
ax = axes.flatten()[idx + 1]
if scores is not None:
scatter = ax.scatter(df['Feature1'], df['Feature2'], c=scores, cmap='RdYlBu_r', alpha=0.6, s=30)
plt.colorbar(scatter, ax=ax, label='Score')
else:
colors = ['red' if a else 'blue' for a in anomaly_mask]
ax.scatter(df['Feature1'], df['Feature2'], c=colors, alpha=0.6, s=30)
ax.set_title(f'{method_name}\n({anomaly_mask.sum()} anomalies)')
ax.set_xlabel('Feature 1')
ax.set_ylabel('Feature 2')
plt.tight_layout()
plt.show()
# 6. Anomaly score comparison
fig, axes = plt.subplots(2, 2, figsize=(14, 8))
# ISO Forest scores
axes[0, 0].hist(iso_scores[~y_true], bins=30, alpha=0.7, label='Normal', color='blue')
axes[0, 0].hist(iso_scores[y_true == 1], bins=10, alpha=0.7, label='Anomaly', color='red')
axes[0, 0].set_xlabel('Anomaly Score')
axes[0, 0].set_title('Isolation Forest Score Distribution')
axes[0, 0].legend()
axes[0, 0].grid(True, alpha=0.3)
# LOF scores
axes[0, 1].hist(lof_scores[~y_true], bins=30, alpha=0.7, label='Normal', color='blue')
axes[0, 1].hist(lof_scores[y_true == 1], bins=10, alpha=0.7, label='Anomaly', color='red')
axes[0, 1].set_xlabel('Anomaly Score')
axes[0, 1].set_title('LOF Score Distribution')
axes[0, 1].legend()
axes[0, 1].grid(True, alpha=0.3)
# ROC-like curve for Isolation Forest
iso_scores_sorted = np.sort(iso_scores)
detected_at_threshold = []
for threshold in iso_scores_sorted:
detected = (iso_scores <= threshold).sum()
true_detected = ((iso_scores <= threshold) & (y_true == 1)).sum()
if detected > 0:
precision = true_detected / detected
recall = true_detected / n_anomalies
detected_at_threshold.append({'Threshold': threshold, 'Precision': precision, 'Recall': recall})
if detected_at_threshold:
threshold_df = pd.DataFrame(detected_at_threshold)
axes[1, 0].plot(threshold_df['Recall'], threshold_df['Precision'], linewidth=2)
axes[1, 0].set_xlabel('Recall')
axes[1, 0].set_ylabel('Precision')
axes[1, 0].set_title('Precision-Recall Curve (Isolation Forest)')
axes[1, 0].grid(True, alpha=0.3)
# Method comparison
methods_comparison = pd.DataFrame({
'Method': ['Z-score', 'Isolation Forest', 'LOF', 'Elliptic Envelope', 'IQR'],
'Accuracy': [
(z_anomaly_mask == y_true).mean(),
(iso_anomaly_mask == y_true).mean(),
(lof_anomaly_mask == y_true).mean(),
(ee_anomaly_mask == y_true).mean(),
(iqr_anomaly_mask == y_true).mean(),
]
})
axes[1, 1].barh(methods_comparison['Method'], methods_comparison['Accuracy'], color='steelblue', edgecolor='black')
axes[1, 1].set_xlabel('Accuracy')
axes[1, 1].set_title('Method Comparison')
axes[1, 1].set_xlim([0, 1])
for i, v in enumerate(methods_comparison['Accuracy']):
axes[1, 1].text(v, i, f' {v:.2%}', va='center')
plt.tight_layout()
plt.show()
# 7. Ensemble anomaly detection
# Combine multiple methods
ensemble_votes = (z_anomaly_mask.astype(int) +
iso_anomaly_mask.astype(int) +
lof_anomaly_mask.astype(int) +
ee_anomaly_mask.astype(int) +
iqr_anomaly_mask.astype(int))
df['ensemble_votes'] = ensemble_votes
ensemble_anomaly = ensemble_votes >= 3 # Majority vote
print(f"\n6. Ensemble (Majority Vote):")
print(f"Anomalies detected: {ensemble_anomaly.sum()}")
print(f"Accuracy: {(ensemble_anomaly == y_true).mean():.2%}")
# Visualize ensemble
fig, ax = plt.subplots(figsize=(10, 8))
scatter = ax.scatter(df['Feature1'], df['Feature2'], c=ensemble_votes, cmap='RdYlGn_r',
s=100 * (ensemble_anomaly.astype(int) + 0.5), alpha=0.6, edgecolors='black')
ax.set_xlabel('Feature 1')
ax.set_ylabel('Feature 2')
ax.set_title('Ensemble Anomaly Detection (Color: Vote Count, Size: Anomaly)')
cbar = plt.colorbar(scatter, ax=ax, label='Number of Methods')
plt.show()
# 8. Time-series anomalies
time_series_data = np.sin(np.arange(100) * 0.2) * 10 + 100
time_series_data = time_series_data + np.random.normal(0, 2, 100)
# Add anomalies
time_series_data[25] = 150
time_series_data[50] = 50
time_series_data[75] = 140
# Detect using rolling statistics
rolling_mean = pd.Series(time_series_data).rolling(window=5).mean()
rolling_std = pd.Series(time_series_data).rolling(window=5).std()
z_scores_ts = np.abs((time_series_data - rolling_mean) / rolling_std) > 2
fig, ax = plt.subplots(figsize=(12, 5))
ax.plot(time_series_data, linewidth=1, label='Data')
ax.plot(rolling_mean, linewidth=2, label='Rolling Mean')
ax.scatter(np.where(z_scores_ts)[0], time_series_data[z_scores_ts], color='red', s=100, label='Anomalies', zorder=5)
ax.fill_between(range(len(time_series_data)), rolling_mean - 2*rolling_std, rolling_mean + 2*rolling_std,
alpha=0.2, label='±2 Std Dev')
ax.set_xlabel('Time')
ax.set_ylabel('Value')
ax.set_title('Time-Series Anomaly Detection')
ax.legend()
ax.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
print("\nAnomaly detection analysis complete!")
Method Selection Guide
- Z-score: Simple, fast, assumes normal distribution
- IQR: Robust, non-parametric, good for outliers
- Isolation Forest: Efficient, good for high dimensions
- LOF: Density-based, finds local anomalies
- Autoencoders: Complex patterns, deep learning
Threshold Selection
- Conservative: Fewer false positives, more false negatives
- Aggressive: More anomalies flagged, more false positives
- Data-driven: Use validation set to optimize threshold
Deliverables
- Anomaly detection results
- Anomaly scores visualization
- Comparison of methods
- Identified anomalous records
- Recommendation for production deployment
- Threshold optimization analysis
GitHub Repository
Related Skills
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
hybrid-cloud-networking
MetaThis skill configures secure hybrid cloud networking between on-premises infrastructure and cloud platforms like AWS, Azure, and GCP. Use it when connecting data centers to the cloud, building hybrid architectures, or implementing secure cross-premises connectivity. It supports key capabilities such as VPNs and dedicated connections like AWS Direct Connect for high-performance, reliable setups.
