Back to Skills

elixir-anti-patterns

vinnie357
Updated Today
35 views
0
View on GitHub
Designdesign

About

This Claude Skill identifies and helps refactor Elixir anti-patterns including code smells, design issues, and bad practices. It analyzes code to detect problems like comments overuse and suggests idiomatic improvements. Use it to get expert guidance on writing cleaner, more maintainable Elixir code.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/vinnie357/claude-skills
Git CloneAlternative
git clone https://github.com/vinnie357/claude-skills.git ~/.claude/skills/elixir-anti-patterns

Copy and paste this command in Claude Code to install this skill

Documentation

Elixir Anti-Patterns Detection and Refactoring

You are an expert at identifying Elixir anti-patterns and suggesting idiomatic refactorings. Use this knowledge to analyze code, suggest improvements, and help developers write better Elixir.

Code-Related Anti-Patterns

1. Comments Overuse

Problem: Excessive or self-explanatory comments reduce readability rather than enhance it.

Detection:

  • Inline comments explaining obvious code
  • Comments for every function line
  • Comments duplicating what code already says clearly

Refactoring:

  • Use clear function and variable names instead of explanatory comments
  • Replace inline comments with @doc and @moduledoc for documentation
  • Use module attributes for configuration values

Example:

# Bad
def calculate() do
  # Get current time
  now = DateTime.utc_now()
  # Add 5 minutes
  DateTime.add(now, 5 * 60, :second)
end

# Good
@minutes_to_add 5

def timestamp_five_minutes_from_now do
  now = DateTime.utc_now()
  DateTime.add(now, @minutes_to_add * 60, :second)
end

2. Complex else Clauses in with

Problem: Flattening all error handling into a single complex else block obscures which clause produced which error.

Detection:

  • Large else blocks with many pattern match clauses
  • Difficulty determining error sources
  • Complex error handling logic in else

Refactoring:

  • Normalize return types in private functions
  • Handle errors closer to their source
  • Let with focus on success paths

Example:

# Bad
def read_config(path) do
  with {:ok, content} <- File.read(path),
       {:ok, decoded} <- Jason.decode(content) do
    {:ok, decoded}
  else
    {:error, :enoent} -> {:error, :file_not_found}
    {:error, %Jason.DecodeError{}} -> {:error, :invalid_json}
    {:error, reason} -> {:error, reason}
  end
end

# Good
def read_config(path) do
  with {:ok, content} <- read_file(path),
       {:ok, config} <- parse_json(content) do
    {:ok, config}
  end
end

defp read_file(path) do
  case File.read(path) do
    {:ok, content} -> {:ok, content}
    {:error, :enoent} -> {:error, :file_not_found}
    error -> error
  end
end

defp parse_json(content) do
  case Jason.decode(content) do
    {:ok, data} -> {:ok, data}
    {:error, _} -> {:error, :invalid_json}
  end
end

3. Complex Extractions in Clauses

Problem: Extracting values across multiple clauses and arguments makes it unclear which variables serve pattern/guard purposes versus function body usage.

Detection:

  • Many variable extractions in function heads
  • Mixed guard and body variable usage
  • Unclear variable purposes

Refactoring:

  • Extract only pattern/guard-related variables in function signatures
  • Use capture patterns like %User{age: age} = user
  • Extract body variables inside the clause

Example:

# Bad
def process(%User{age: age, name: name, email: email} = user) when age >= 18 do
  # Only using name and email in body, not age
  send_email(email, "Hello #{name}")
end

# Good
def process(%User{age: age} = user) when age >= 18 do
  send_email(user.email, "Hello #{user.name}")
end

4. Dynamic Atom Creation

Problem: Atoms aren't garbage-collected and are limited to ~1 million. Uncontrolled dynamic atom creation poses memory and security risks.

Detection:

  • String.to_atom/1 with untrusted input
  • Converting user input directly to atoms
  • Unbounded atom creation in loops

Refactoring:

  • Use explicit mappings via pattern-matching
  • Use String.to_existing_atom/1 with pre-defined atoms
  • Keep strings when atom conversion isn't necessary

Example:

# Bad - Security risk!
def set_role(user, role_string) do
  %{user | role: String.to_atom(role_string)}
end

# Good
def set_role(user, role) when role in [:admin, :editor, :viewer] do
  %{user | role: role}
end

# Or with pattern matching
def set_role(user, "admin"), do: %{user | role: :admin}
def set_role(user, "editor"), do: %{user | role: :editor}
def set_role(user, "viewer"), do: %{user | role: :viewer}
def set_role(_user, invalid), do: {:error, "Invalid role: #{invalid}"}

5. Long Parameter List

Problem: Functions with excessive parameters become confusing and error-prone to use.

Detection:

  • Functions with 4+ parameters
  • Parameters that are conceptually related
  • Difficult to remember parameter order

Refactoring:

  • Group related parameters into maps or structs
  • Use keyword lists for optional parameters
  • Create domain objects

Example:

# Bad
def create_loan(user_id, user_name, user_email, book_id, book_title, book_isbn) do
  # ...
end

# Good
def create_loan(user, book) do
  # ...
end

# Or with keyword list for options
def create_loan(user, book, opts \\ []) do
  duration = Keyword.get(opts, :duration, 14)
  renewable = Keyword.get(opts, :renewable, true)
  # ...
end

6. Namespace Trespassing

Problem: Defining modules outside your library's namespace risks conflicts since the Erlang VM loads only one module instance per name.

Detection:

  • Library defining modules in common namespaces (e.g., Plug.* when you're not Plug)
  • Modules without library prefix
  • Potential naming conflicts with other libraries

Refactoring:

  • Always prefix modules with your library namespace
  • Use clear, unique top-level module names

Example:

# Bad - Library named :plug_auth
defmodule Plug.Auth do
  # This conflicts with the actual Plug library!
end

# Good
defmodule PlugAuth do
  # ...
end

defmodule PlugAuth.Session do
  # ...
end

7. Non-assertive Map Access

Problem: Using dynamic access (map[:key]) for required keys masks missing data, allowing nil to propagate instead of failing fast.

Detection:

  • map[:key] for required/expected keys
  • Nil checks after map access
  • Silent failures from missing keys

Refactoring:

  • Use static access (map.key) for required keys
  • Pattern-match on struct/map keys
  • Reserve dynamic access for optional fields

Example:

# Bad
def distance(point) do
  x = point[:x]  # Returns nil if :x is missing!
  y = point[:y]
  :math.sqrt(x * x + y * y)  # Crashes on nil, but unclear why
end

# Good
def distance(%{x: x, y: y}) do
  :math.sqrt(x * x + y * y)  # Clear error if keys missing
end

# Or with structs
defmodule Point do
  defstruct [:x, :y]
end

def distance(%Point{x: x, y: y}) do
  :math.sqrt(x * x + y * y)
end

8. Non-assertive Pattern Matching

Problem: Writing defensive code that returns incorrect values instead of using pattern matching to assert expected structures causes silent failures.

Detection:

  • Defensive nil checks instead of pattern matching
  • Functions returning invalid data on unexpected input
  • Avoiding crashes when crashes are appropriate

Refactoring:

  • Use pattern matching to assert expected structures
  • Let functions crash on invalid input
  • Trust supervisors to handle failures

Example:

# Bad
def parse_query_param(param) do
  case String.split(param, "=") do
    [key, value] -> {key, value}
    _ -> {"", ""}  # Silent failure!
  end
end

# Good
def parse_query_param(param) do
  [key, value] = String.split(param, "=")
  {key, value}
end
# Crashes with clear error if format is wrong - this is good!

9. Non-assertive Truthiness

Problem: Using truthiness operators (&&, ||, !) when all operands are boolean is unnecessarily generic and unclear.

Detection:

  • &&, ||, ! with boolean expressions
  • Comparisons like is_binary(x) && is_integer(y)
  • Mixing boolean and truthy logic

Refactoring:

  • Use and, or, not for boolean-only operations
  • Reserve &&, ||, ! for truthy/falsy logic

Example:

# Bad
def valid_user?(name, age) do
  is_binary(name) && is_integer(age) && age >= 18
end

# Good
def valid_user?(name, age) do
  is_binary(name) and is_integer(age) and age >= 18
end

# Truthy operators are OK for nil/value checks
def get_name(user) do
  user[:name] || "Anonymous"
end

10. Structs with 32 Fields or More

Problem: Structs with 32+ fields switch from Erlang's efficient flat-map representation to hash maps, increasing memory usage.

Detection:

  • Struct definitions with 32+ fields
  • Large, flat data structures
  • Performance degradation with many fields

Refactoring:

  • Nest optional fields into metadata structures
  • Use nested structs for related fields
  • Group frequently-accessed fields separately

Example:

# Bad
defmodule User do
  defstruct [
    :id, :email, :name, :age, :address, :city, :state, :zip,
    :phone, :mobile, :fax, :company, :title, :department,
    :created_at, :updated_at, :last_login, :login_count,
    :preference1, :preference2, :preference3, :preference4,
    # ... 15 more fields
  ]
end

# Good
defmodule User do
  defstruct [
    :id,
    :email,
    :name,
    :profile,      # Nested struct
    :preferences,  # Nested struct
    :metadata      # Nested struct
  ]
end

defmodule User.Profile do
  defstruct [:age, :phone, :mobile, :address, :city, :state, :zip]
end

defmodule User.Preferences do
  defstruct [:theme, :notifications, :language]
end

Design-Related Anti-Patterns

1. Alternative Return Types

Problem: Functions with options that drastically change their return type make it unclear what the function actually returns.

Detection:

  • Options that change return type structure
  • Functions returning different types based on flags
  • Unclear function contracts

Refactoring:

  • Create separate, specifically-named functions
  • Keep return types consistent within a function

Example:

# Bad
def parse(string, opts \\ []) do
  case Integer.parse(string) do
    {int, rest} ->
      if opts[:discard_rest], do: int, else: {int, rest}
    :error ->
      :error
  end
end

# Good
def parse(string) do
  case Integer.parse(string) do
    {int, rest} -> {int, rest}
    :error -> :error
  end
end

def parse_discard_rest(string) do
  case Integer.parse(string) do
    {int, _rest} -> int
    :error -> :error
  end
end

2. Boolean Obsession

Problem: Using multiple booleans with overlapping states instead of atoms or composite types to represent domain concepts.

Detection:

  • Multiple boolean parameters
  • Overlapping boolean states
  • Complex boolean logic

Refactoring:

  • Replace multiple booleans with a single atom/enum option
  • Prefer atoms over booleans even for single arguments
  • Use domain-specific types

Example:

# Bad
def create_user(name, email, admin: false, editor: false, viewer: true) do
  # What if admin: true, editor: true?
end

# Good
def create_user(name, email, role: :viewer) do
  # Clear: role can be :admin, :editor, or :viewer
end

3. Exceptions for Control-Flow

Problem: Using try/rescue for expected errors instead of pattern matching with case statements and tuple returns.

Detection:

  • try/rescue blocks for normal operation errors
  • Using ! functions and rescuing
  • Exceptions in normal business logic

Refactoring:

  • Use non-bang functions returning {:ok, value} or {:error, reason}
  • Reserve exceptions for invalid arguments and programming errors
  • Use pattern matching for error handling

Example:

# Bad
def read_config(path) do
  try do
    content = File.read!(path)
    Jason.decode!(content)
  rescue
    e -> {:error, e}
  end
end

# Good
def read_config(path) do
  with {:ok, content} <- File.read(path),
       {:ok, config} <- Jason.decode(content) do
    {:ok, config}
  end
end

4. Primitive Obsession

Problem: Excessively using basic types (strings, integers) instead of creating composite types to represent structured domain concepts.

Detection:

  • Passing related primitives separately
  • String/integer parameters representing complex concepts
  • Lack of domain modeling

Refactoring:

  • Create domain-specific structs or maps
  • Introduce parser functions converting primitives to structured data
  • Use types to enforce business rules

Example:

# Bad
def create_address(street, city, state, zip, country) do
  # All strings, no validation
  "#{street}, #{city}, #{state} #{zip}, #{country}"
end

# Good
defmodule Address do
  defstruct [:street, :city, :state, :zip, :country]

  def new(attrs) do
    struct!(__MODULE__, attrs)
  end

  def format(%__MODULE__{} = address) do
    "#{address.street}, #{address.city}, #{address.state} #{address.zip}, #{address.country}"
  end
end

5. Unrelated Multi-Clause Function

Problem: Grouping completely unrelated business logic into one multi-clause function.

Detection:

  • Single function handling multiple unrelated types
  • Overly broad type specifications
  • No conceptual relationship between clauses

Refactoring:

  • Split into distinct functions with specific names
  • Reserve multi-clause patterns for related functionality variations
  • Use protocols for polymorphism when appropriate

Example:

# Bad
def update(%Product{} = product) do
  # Product-specific logic
end

def update(%Animal{} = animal) do
  # Completely different animal logic
end

# Good
def update_product(%Product{} = product) do
  # Product-specific logic
end

def update_animal(%Animal{} = animal) do
  # Animal-specific logic
end

# Or use a protocol
defprotocol Updatable do
  def update(item)
end

defimpl Updatable, for: Product do
  def update(product), do: # ...
end

defimpl Updatable, for: Animal do
  def update(animal), do: # ...
end

6. Using Application Configuration for Libraries

Problem: Libraries relying on global application environment configuration prevent multiple dependent applications from configuring the library differently.

Detection:

  • Application.get_env/2 or Application.fetch_env!/2 in library code
  • Global configuration requirements
  • Inability to configure per-consumer

Refactoring:

  • Accept configuration via function parameters
  • Use keyword lists with sensible defaults
  • Allow runtime configuration

Example:

# Bad - Library code
def split(string) do
  parts = Application.fetch_env!(:dash_splitter, :parts)
  String.split(string, "-", parts: parts)
end

# Good
def split(string, opts \\ []) do
  parts = Keyword.get(opts, :parts, 2)
  String.split(string, "-", parts: parts)
end

Usage Guidelines

When reviewing or writing Elixir code:

  1. Scan for anti-patterns - Check code against the patterns listed above
  2. Explain the problem - Help the developer understand why it's an issue
  3. Suggest refactoring - Provide concrete, idiomatic alternatives
  4. Consider context - Sometimes anti-patterns are acceptable for specific use cases
  5. Prioritize - Focus on high-impact issues first (security, performance, maintainability)

Key Principles

  • Let it crash - Use pattern matching to assert expectations; don't write defensive code
  • Fail fast - Expose errors early rather than propagating nil or invalid data
  • Be explicit - Prefer clear, specific code over clever or terse solutions
  • Model your domain - Create types that represent business concepts
  • Design for clarity - Code should be obvious to read and maintain

GitHub Repository

vinnie357/claude-skills
Path: elixir/skills/anti-patterns

Related Skills

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

Algorithmic Art Generation

Meta

This skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.

View skill

webapp-testing

Testing

This Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.

View skill