Back to Skills

Convex Agents Rate Limiting

Sstobo
Updated Today
44 views
5
5
View on GitHub
Developmentapi

About

This skill provides rate limiting for Convex agents to prevent API abuse and manage token budgets. It enables per-user message frequency limits, global API caps, burst capacity, and token quota management. Use it to implement fair resource allocation and control LLM costs in multi-user systems.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/Sstobo/convex-skills
Git CloneAlternative
git clone https://github.com/Sstobo/convex-skills.git ~/.claude/skills/Convex Agents Rate Limiting

Copy and paste this command in Claude Code to install this skill

Documentation

Purpose

Rate limiting protects against abuse, manages LLM costs, and ensures fair resource allocation. Covers message frequency limits and token usage quotas.

When to Use This Skill

  • Preventing rapid-fire message spam
  • Limiting total tokens per user
  • Implementing burst capacity
  • Global API limits to stay under provider quotas
  • Fair resource allocation in multi-user systems
  • Billing based on token usage

Configure Rate Limiter

import { RateLimiter, MINUTE, SECOND } from "@convex-dev/rate-limiter";

export const rateLimiter = new RateLimiter(components.rateLimiter, {
  sendMessage: {
    kind: "fixed window",
    period: 5 * SECOND,
    rate: 1,
    capacity: 2,
  },
  globalSendMessage: {
    kind: "token bucket",
    period: MINUTE,
    rate: 1_000,
  },
  tokenUsagePerUser: {
    kind: "token bucket",
    period: MINUTE,
    rate: 2000,
    capacity: 10000,
  },
  globalTokenUsage: {
    kind: "token bucket",
    period: MINUTE,
    rate: 100_000,
  },
});

Check Message Rate Limit

export const sendMessage = mutation({
  args: { threadId: v.string(), message: v.string(), userId: v.string() },
  handler: async (ctx, { threadId, message, userId }) => {
    try {
      await rateLimiter.limit(ctx, "sendMessage", {
        key: userId,
        throws: true,
      });

      await rateLimiter.limit(ctx, "globalSendMessage", { throws: true });

      const { messageId } = await saveMessage(ctx, components.agent, {
        threadId,
        prompt: message,
      });

      return { success: true, messageId };
    } catch (error) {
      if (isRateLimitError(error)) {
        return {
          success: false,
          error: "Rate limit exceeded",
          retryAfter: error.data.retryAfter,
        };
      }
      throw error;
    }
  },
});

Check Token Usage

export const checkTokenUsage = action({
  args: { threadId: v.string(), question: v.string(), userId: v.string() },
  handler: async (ctx, { threadId, question, userId }) => {
    const estimatedTokens = await estimateTokens(ctx, threadId, question);

    try {
      await rateLimiter.check(ctx, "tokenUsagePerUser", {
        key: userId,
        count: estimatedTokens,
        throws: true,
      });

      // Proceed with generation
      const { thread } = await myAgent.continueThread(ctx, { threadId });
      const result = await thread.generateText({ prompt: question });

      return { success: true, response: result.text };
    } catch (error) {
      if (isRateLimitError(error)) {
        return {
          success: false,
          error: "Token limit exceeded",
          retryAfter: error.data.retryAfter,
        };
      }
      throw error;
    }
  },
});

async function estimateTokens(
  ctx: QueryCtx,
  threadId: string,
  question: string
): Promise<number> {
  const questionTokens = Math.ceil(question.length / 4);
  const responseTokens = Math.ceil(questionTokens * 3);
  return questionTokens + responseTokens;
}

Track Actual Usage

const myAgent = new Agent(components.agent, {
  name: "My Agent",
  languageModel: openai.chat("gpt-4o-mini"),
  usageHandler: async (ctx, { usage, userId }) => {
    if (!userId) return;

    await rateLimiter.limit(ctx, "tokenUsagePerUser", {
      key: userId,
      count: usage.totalTokens,
      reserve: true,
    });
  },
});

Client-Side Rate Limit Checking

import { useRateLimit } from "@convex-dev/rate-limiter/react";
import { isRateLimitError } from "@convex-dev/rate-limiter";

function ChatInput() {
  const { status } = useRateLimit(api.rateLimiting.getRateLimit);

  if (status && !status.ok) {
    return (
      <div className="text-red-500">
        Rate limit exceeded. Retry after{" "}
        {new Date(status.retryAt).toLocaleTimeString()}
      </div>
    );
  }

  return <input type="text" placeholder="Send a message..." />;
}

Key Principles

  • Fixed window for frequency: Use for simple X per period
  • Token bucket for capacity: Use for burst-friendly limits
  • Estimate before, track after: Prevent early, record actual usage
  • Global + per-user limits: Balance fair access with resource caps
  • Retryable errors: Clients can retry with backoff

Next Steps

  • See usage-tracking for billing based on token usage
  • See fundamentals for agent setup
  • See debugging for troubleshooting

GitHub Repository

Sstobo/convex-skills
Path: convex-agents-rate-limiting

Related Skills

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

creating-opencode-plugins

Meta

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

View skill

nestjs

Meta

This skill provides NestJS development standards and architectural patterns for building domain-centric applications. It covers modular design, dependency injection, decorator patterns, and key framework features like controllers, services, middleware, and interceptors. Use it when developing NestJS applications, implementing APIs, configuring microservices, or integrating with databases.

View skill