test-design-techniques
About
This Claude Skill provides systematic test design techniques including boundary value analysis, equivalence partitioning, and decision tables. It helps developers create comprehensive test cases while reducing redundancy through methods like pairwise testing. Use it when designing tests for complex business rules, stateful behavior, or ensuring systematic coverage.
Quick Install
Claude Code
Recommended/plugin add https://github.com/proffesor-for-testing/agentic-qegit clone https://github.com/proffesor-for-testing/agentic-qe.git ~/.claude/skills/test-design-techniquesCopy and paste this command in Claude Code to install this skill
Documentation
Test Design Techniques
<default_to_action> When designing test cases systematically:
- APPLY Boundary Value Analysis (test at min, max, edges)
- USE Equivalence Partitioning (one test per partition)
- CREATE Decision Tables (for complex business rules)
- MODEL State Transitions (for stateful behavior)
- REDUCE with Pairwise Testing (for combinations)
Quick Design Selection:
- Numeric ranges → BVA + EP
- Multiple conditions → Decision Tables
- Workflows → State Transition
- Many parameters → Pairwise Testing
Critical Success Factors:
- Systematic design finds more bugs with fewer tests
- Random testing is inefficient
- 40+ years of research backs these techniques </default_to_action>
Quick Reference Card
When to Use
- Designing new test suites
- Optimizing existing tests
- Complex business rules
- Reducing test redundancy
Technique Selection Guide
| Scenario | Technique |
|---|---|
| Numeric input ranges | BVA + EP |
| Multiple conditions | Decision Tables |
| Stateful workflows | State Transition |
| Many parameter combinations | Pairwise |
| All combinations critical | Full Factorial |
Boundary Value Analysis (BVA)
Principle: Bugs cluster at boundaries.
Test at boundaries:
- Minimum valid value
- Just below minimum (invalid)
- Just above minimum (valid)
- Maximum valid value
- Just above maximum (invalid)
// Age field: 18-120 valid
const boundaryTests = [
{ input: 17, expected: 'invalid' }, // Below min
{ input: 18, expected: 'valid' }, // Min boundary
{ input: 19, expected: 'valid' }, // Above min
{ input: 119, expected: 'valid' }, // Below max
{ input: 120, expected: 'valid' }, // Max boundary
{ input: 121, expected: 'invalid' } // Above max
];
Equivalence Partitioning (EP)
Principle: One test per equivalent class.
// Discount rules:
// 1-10: No discount
// 11-100: 10% discount
// 101+: 20% discount
const partitionTests = [
{ quantity: -1, expected: 'invalid' }, // Invalid partition
{ quantity: 5, expected: 0 }, // Partition 1: 1-10
{ quantity: 50, expected: 0.10 }, // Partition 2: 11-100
{ quantity: 200, expected: 0.20 } // Partition 3: 101+
];
// 4 tests cover all behavior (vs 200+ if testing every value)
Decision Tables
Use for: Complex business rules with multiple conditions.
Loan Approval Rules:
┌──────────────┬───────┬───────┬───────┬───────┬───────┐
│ Conditions │ R1 │ R2 │ R3 │ R4 │ R5 │
├──────────────┼───────┼───────┼───────┼───────┼───────┤
│ Age ≥ 18 │ Yes │ Yes │ Yes │ No │ Yes │
│ Credit ≥ 700 │ Yes │ Yes │ No │ Yes │ No │
│ Income ≥ 50k │ Yes │ No │ Yes │ Yes │ Yes │
├──────────────┼───────┼───────┼───────┼───────┼───────┤
│ Result │Approve│Approve│Reject │Reject │Reject │
└──────────────┴───────┴───────┴───────┴───────┴───────┘
// 5 tests cover all decision combinations
State Transition Testing
Model state changes:
States: Logged Out → Logged In → Premium → Suspended
Valid Transitions:
- Login: Logged Out → Logged In
- Upgrade: Logged In → Premium
- Payment Fail: Premium → Suspended
- Logout: Any → Logged Out
Invalid Transitions to Test:
- Logged Out → Premium (should reject)
- Suspended → Premium (should reject)
test('cannot upgrade without login', async () => {
const result = await user.upgrade(); // While logged out
expect(result.error).toBe('Login required');
});
Pairwise (Combinatorial) Testing
Problem: All combinations explode exponentially.
// Parameters:
// Browser: Chrome, Firefox, Safari (3)
// OS: Windows, Mac, Linux (3)
// Screen: Desktop, Tablet, Mobile (3)
// All combinations: 3 × 3 × 3 = 27 tests
// Pairwise: 9 tests cover all pairs
const pairwiseTests = [
{ browser: 'Chrome', os: 'Windows', screen: 'Desktop' },
{ browser: 'Chrome', os: 'Mac', screen: 'Tablet' },
{ browser: 'Chrome', os: 'Linux', screen: 'Mobile' },
{ browser: 'Firefox', os: 'Windows', screen: 'Tablet' },
{ browser: 'Firefox', os: 'Mac', screen: 'Mobile' },
{ browser: 'Firefox', os: 'Linux', screen: 'Desktop' },
{ browser: 'Safari', os: 'Windows', screen: 'Mobile' },
{ browser: 'Safari', os: 'Mac', screen: 'Desktop' },
{ browser: 'Safari', os: 'Linux', screen: 'Tablet' }
];
// Each pair appears at least once
Agent-Driven Test Design
// Auto-generate BVA tests
await Task("Generate BVA Tests", {
field: 'age',
dataType: 'integer',
constraints: { min: 18, max: 120 }
}, "qe-test-generator");
// Returns: 6 boundary test cases
// Auto-generate pairwise tests
await Task("Generate Pairwise Tests", {
parameters: {
browser: ['Chrome', 'Firefox', 'Safari'],
os: ['Windows', 'Mac', 'Linux'],
screen: ['Desktop', 'Tablet', 'Mobile']
}
}, "qe-test-generator");
// Returns: 9-12 tests (vs 27 full combination)
Agent Coordination Hints
Memory Namespace
aqe/test-design/
├── bva-analysis/* - Boundary value tests
├── partitions/* - Equivalence partitions
├── decision-tables/* - Decision table tests
└── pairwise/* - Combinatorial reduction
Fleet Coordination
const designFleet = await FleetManager.coordinate({
strategy: 'systematic-test-design',
agents: [
'qe-test-generator', // Apply design techniques
'qe-coverage-analyzer', // Analyze coverage
'qe-quality-analyzer' // Assess test quality
],
topology: 'sequential'
});
Related Skills
- agentic-quality-engineering - Agent-driven testing
- risk-based-testing - Prioritize by risk
- mutation-testing - Validate test effectiveness
Remember
Systematic design > Random testing. 40+ years of research shows these techniques find more bugs with fewer tests than ad-hoc approaches.
Combine techniques for comprehensive coverage. BVA for boundaries, EP for partitions, decision tables for rules, pairwise for combinations.
With Agents: qe-test-generator applies these techniques automatically, generating optimal test suites with maximum coverage and minimum redundancy. Agents identify boundaries, partitions, and combinations from code analysis.
GitHub Repository
Related Skills
test-environment-management
OtherThis Claude Skill manages test infrastructure using infrastructure as code, Docker/Kubernetes for consistent environments, and service virtualization. It helps developers ensure environment parity with production and optimize testing costs through auto-shutdown and spot instances. Use it when provisioning test environments or managing testing infrastructure.
regression-testing
OtherThis skill strategically selects and runs regression tests based on code changes and risk, ensuring fixes don't break existing functionality. It analyzes impact, optimizes test execution for faster feedback, and helps manage continuous regression within CI/CD. Use it for verifying changes, planning test suites, or streamlining test execution.
localization-testing
OtherThis skill automates internationalization and localization testing for global products, including translation coverage, locale-specific formats, and RTL language support. It's designed for developers launching in new markets or building multi-language applications to validate cultural appropriateness and character encoding. Use it to systematically verify i18n/l10n requirements across text, visuals, and regional formats.
mutation-testing
OtherThe mutation-testing skill evaluates test suite effectiveness by automatically introducing code mutations and measuring the kill rate. It helps developers identify weak tests and improve test quality by revealing which bugs tests actually catch. This specialized-testing skill uses multiple agents to mutate code, run tests against mutants, and highlight areas needing stronger assertions.
