development-assistant
关于
This Claude skill provides expert guidance for extending the Claude Patent Creator system, specifically for adding new MCP tools, analyzers, and features. It offers structured workflows and best practices for implementing code, validation, testing, and documentation. Developers should use it when working on MCP integrations, configuration options, or performance optimizations within the system.
快速安装
Claude Code
推荐/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creatorgit clone https://github.com/RobThePCGuy/Claude-Patent-Creator.git ~/.claude/skills/development-assistant在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Development Assistant Skill
Expert system for developing and extending the Claude Patent Creator. Guides through adding new MCP tools, analyzers, configuration options, and features while following best practices and existing patterns.
When to Use This Skill
Activate when adding MCP tools, analyzers, configuration options, BigQuery queries, slash commands, or implementing performance optimizations.
Development Workflow
Feature Request -> Planning -> Implementation (Code + Validation + Monitoring + Tests) -> Testing -> Documentation -> Integration
Adding New MCP Tools
Quick Start:
- Define inputs, outputs, dependencies
- Create Pydantic model in
mcp_server/validation.py - Add tool function in
mcp_server/server.pywith decorators - Create test script in
scripts/ - Update CLAUDE.md
Key Decorators:
@mcp.tool() # Register as MCP tool
@validate_input(YourInput) # Pydantic validation
@track_performance # Performance monitoring
Template:
def your_tool(param: str, optional: int = 10) -> dict:
"""Comprehensive docstring (Claude sees this).
Args:
param: Description
optional: Description with default
Returns:
Dictionary containing: key1, key2, key3
"""
# Implementation
return {"result": "data"}
Adding New Analyzers
Overview: Analyzers inherit from BaseAnalyzer and check USPTO compliance.
Minimal Example:
from mcp_server.analyzer_base import BaseAnalyzer
class YourAnalyzer(BaseAnalyzer):
def __init__(self):
super().__init__()
self.mpep_sections = ["608", "2173"]
def analyze(self, content: str) -> dict:
issues = []
if violation:
issues.append({
"type": "violation_name",
"severity": "critical",
"mpep_citation": "MPEP 608",
"recommendation": "Fix description"
})
return {"compliant": len(issues) == 0, "issues": issues}
Adding Configuration Options
Use Pydantic settings in mcp_server/config.py:
# In config.py
class AppSettings(BaseSettings):
enable_feature_x: bool = Field(default=False, description="Enable X")
# In your code
from mcp_server.config import get_settings
if get_settings().enable_feature_x:
# Feature enabled
Adding Performance Monitoring
@track_performance
def your_function(data):
with OperationTimer("step1"):
result1 = step1(data)
with OperationTimer("step2"):
result2 = step2(result1)
return result2
Modifying RAG Search Pipeline
Pipeline: Query -> HyDE -> Vector+BM25 -> RRF -> Reranking -> Results
Customization Points: Query expansion, custom scoring, filtering, reranking strategies
Adding New Slash Commands
- Create
.claude/commands/your-command.md - Add frontmatter:
description,model - Write workflow instructions
- Restart Claude Code
Template:
---
description: Brief command description
model: claude-sonnet-4-5-20250929
---
# Command Name
## When to Use
- Use case 1
## How It Works
Step 1: ...
Development Best Practices
- Follow existing patterns
- Use type hints
- Write docstrings (Google style)
- Handle errors gracefully
- Validate inputs (Pydantic)
- Log operations
- Monitor performance
Common Development Tasks
Add BigQuery Query: Add method in mcp_server/bigquery_search.py
Add Validation Rule:
class YourInput(BaseModel):
field: str
@field_validator("field")
@classmethod
def validate_field(cls, v):
if not meets_requirement(v):
raise ValueError("Error message")
return v
Add Logging:
from mcp_server.logging_config import get_logger
logger = get_logger()
logger.info("event_name", extra={"context": "data"})
Quick Reference: File Locations
| Task | Primary File | Related Files |
|---|---|---|
| Add MCP tool | mcp_server/server.py | mcp_server/validation.py |
| Add analyzer | mcp_server/your_analyzer.py | mcp_server/analyzer_base.py |
| Add config | mcp_server/config.py | .env, CLAUDE.md |
| Add BigQuery query | mcp_server/bigquery_search.py | - |
| Add test | scripts/test_your_feature.py | - |
Key Patterns
MCP Tool Pattern:
@mcp.tool()
@validate_input(InputModel)
@track_performance
def tool_name(param: type) -> dict:
"""Docstring visible to Claude."""
from module import Component
if invalid:
return {"error": "message"}
result = process(param)
return {"key": "value"}
Analyzer Pattern:
class YourAnalyzer(BaseAnalyzer):
def analyze(self, content: str) -> dict:
issues = []
issues.extend(self._check_x(content))
return {
"compliant": len(issues) == 0,
"issues": issues,
"recommendations": self._generate_recommendations(issues)
}
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
creating-opencode-plugins
元该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
Algorithmic Art Generation
元这个Claude Skill帮助开发者使用p5.js创建算法艺术,特别适用于生成式艺术和交互式可视化项目。它支持种子随机性、流场和粒子系统等关键技术,确保艺术作品的重复性和独特性。当讨论生成艺术、算法艺术或计算美学时,该技能会自动激活,指导开发者完成从概念设计到技术实现的全过程。
