MCP HubMCP Hub
返回技能列表

when-using-advanced-swarm-use-swarm-advanced

DNYoussef
更新于 Today
17 次查看
0
在 GitHub 上查看
其他swarmadvancedcoordinationtopologyself-organizing

关于

This skill provides advanced swarm coordination with dynamic topology switching and self-organizing behaviors for complex multi-agent systems. Use it when you need sophisticated orchestration with adaptive topology selection and intelligent coordination patterns. It's designed for developers building complex swarm infrastructures requiring dynamic reconfiguration.

技能文档

Advanced Swarm Coordination SOP

Overview

This skill implements advanced swarm patterns with dynamic topology switching, self-organizing behaviors, and intelligent coordination for complex multi-agent systems. It enables sophisticated swarm orchestration with adaptive topology selection and performance optimization.

Agents & Responsibilities

hierarchical-coordinator

Role: Tree-based coordination with leader-follower patterns Responsibilities:

  • Manage hierarchical swarm structures
  • Coordinate parent-child agent relationships
  • Handle task delegation cascades
  • Monitor hierarchy performance

mesh-coordinator

Role: Peer-to-peer coordination with full connectivity Responsibilities:

  • Enable direct agent-to-agent communication
  • Manage mesh network topology
  • Coordinate distributed consensus
  • Handle fault tolerance

adaptive-coordinator

Role: Dynamic topology switching based on workload Responsibilities:

  • Analyze task complexity and requirements
  • Switch topologies dynamically
  • Optimize resource allocation
  • Monitor and adapt to performance

Phase 1: Initialize Swarm Infrastructure

Objective

Establish foundation for advanced swarm coordination with proper topology and agent configuration.

Evidence-Based Validation

  • Swarm initialized with confirmed topology
  • All agents spawned successfully
  • Memory coordination active
  • Health checks passing

Scripts

# Initialize hierarchical swarm
npx claude-flow@alpha swarm init --topology hierarchical --max-agents 10

# Initialize mesh swarm
npx claude-flow@alpha swarm init --topology mesh --max-agents 8

# Initialize adaptive swarm
npx claude-flow@alpha swarm init --topology adaptive --max-agents 12 --strategy balanced

# Verify initialization
npx claude-flow@alpha swarm status --verbose

# Setup memory coordination
npx claude-flow@alpha memory store --key "swarm/topology" --value "hierarchical"
npx claude-flow@alpha memory store --key "swarm/max-agents" --value "10"

MCP Integration

// Initialize swarm with MCP
mcp__claude-flow__swarm_init({
  topology: "hierarchical",
  maxAgents: 10,
  strategy: "balanced"
})

// Alternative: Mesh topology
mcp__claude-flow__swarm_init({
  topology: "mesh",
  maxAgents: 8,
  strategy: "specialized"
})

// Alternative: Adaptive topology
mcp__claude-flow__swarm_init({
  topology: "adaptive",
  maxAgents: 12,
  strategy: "adaptive"
})

Memory Patterns

# Store swarm configuration
npx claude-flow@alpha memory store \
  --key "swarm/config" \
  --value '{"topology":"hierarchical","maxAgents":10,"strategy":"balanced"}'

# Store agent assignments
npx claude-flow@alpha memory store \
  --key "swarm/agents/coordinator-1" \
  --value '{"type":"hierarchical-coordinator","status":"active","level":0}'

Validation Criteria

  1. Swarm ID generated and confirmed
  2. Topology matches requested configuration
  3. Agent count within specified limits
  4. Memory coordination operational
  5. Health endpoint responding

Phase 2: Configure Topology

Objective

Select and configure optimal topology pattern based on task requirements and complexity.

Evidence-Based Validation

  • Topology selected based on analysis
  • Coordinator agents spawned
  • Agent connections established
  • Topology metrics baseline recorded

Scripts

# Spawn hierarchical coordinator
npx claude-flow@alpha agent spawn \
  --type coordinator \
  --role "hierarchical-coordinator" \
  --capabilities "task-delegation,hierarchy-management"

# Spawn mesh coordinator
npx claude-flow@alpha agent spawn \
  --type coordinator \
  --role "mesh-coordinator" \
  --capabilities "peer-coordination,consensus"

# Spawn adaptive coordinator
npx claude-flow@alpha agent spawn \
  --type coordinator \
  --role "adaptive-coordinator" \
  --capabilities "topology-switching,optimization"

# Configure topology
npx claude-flow@alpha swarm configure \
  --topology hierarchical \
  --levels 3 \
  --branching-factor 3

# Verify topology
npx claude-flow@alpha swarm status --show-topology

MCP Integration

// Spawn coordinator agents
mcp__claude-flow__agent_spawn({
  type: "coordinator",
  name: "hierarchical-coordinator",
  capabilities: ["task-delegation", "hierarchy-management"]
})

mcp__claude-flow__agent_spawn({
  type: "coordinator",
  name: "mesh-coordinator",
  capabilities: ["peer-coordination", "consensus"]
})

mcp__claude-flow__agent_spawn({
  type: "coordinator",
  name: "adaptive-coordinator",
  capabilities: ["topology-switching", "optimization"]
})

Topology Selection Guide

Hierarchical:

  • Best for: Clear task hierarchies, delegation workflows
  • Pros: Efficient delegation, clear authority
  • Cons: Single point of failure at root
  • Use when: Tasks have natural parent-child relationships

Mesh:

  • Best for: Peer collaboration, distributed consensus
  • Pros: High fault tolerance, no bottlenecks
  • Cons: Higher communication overhead
  • Use when: Agents need direct communication

Star:

  • Best for: Centralized coordination, simple workflows
  • Pros: Simple control, low complexity
  • Cons: Central coordinator bottleneck
  • Use when: Single coordinator can handle all traffic

Ring:

  • Best for: Sequential processing, pipeline workflows
  • Pros: Predictable flow, ordered execution
  • Cons: Latency accumulation
  • Use when: Tasks must be processed in sequence

Adaptive:

  • Best for: Dynamic workloads, variable complexity
  • Pros: Automatic optimization, flexible
  • Cons: Overhead from topology switching
  • Use when: Workload patterns vary significantly

Memory Patterns

# Store topology configuration
npx claude-flow@alpha memory store \
  --key "swarm/topology/config" \
  --value '{"type":"hierarchical","levels":3,"branchingFactor":3}'

# Store baseline metrics
npx claude-flow@alpha memory store \
  --key "swarm/metrics/baseline" \
  --value '{"latency":45,"throughput":120,"agentUtilization":0.75}'

Validation Criteria

  1. Coordinator agents active and responsive
  2. Topology structure matches configuration
  3. Agent connections verified
  4. Baseline metrics recorded
  5. No configuration errors

Phase 3: Deploy Agents

Objective

Spawn specialized agents based on topology and assign roles with proper coordination.

Evidence-Based Validation

  • All required agents spawned
  • Agent roles assigned correctly
  • Coordination protocols active
  • Agent health checks passing

Scripts

# Spawn specialized agents for hierarchical topology
npx claude-flow@alpha agent spawn --type researcher --capabilities "analysis,patterns"
npx claude-flow@alpha agent spawn --type coder --capabilities "implementation,testing"
npx claude-flow@alpha agent spawn --type reviewer --capabilities "quality,security"

# Assign agents to hierarchy levels
npx claude-flow@alpha swarm assign \
  --agent-id "agent-001" \
  --level 1 \
  --parent "coordinator-1"

# Spawn agents for mesh topology
npx claude-flow@alpha agent spawn --type analyst --peer-mode enabled
npx claude-flow@alpha agent spawn --type optimizer --peer-mode enabled

# Configure peer connections
npx claude-flow@alpha swarm connect-peers --all

# List all agents
npx claude-flow@alpha agent list --show-roles --show-connections

MCP Integration

// Spawn specialized agents
mcp__claude-flow__agent_spawn({
  type: "researcher",
  capabilities: ["analysis", "patterns", "research"]
})

mcp__claude-flow__agent_spawn({
  type: "coder",
  capabilities: ["implementation", "testing", "debugging"]
})

mcp__claude-flow__agent_spawn({
  type: "analyst",
  capabilities: ["optimization", "performance", "metrics"]
})

// Check agent status
mcp__claude-flow__agent_list({
  filter: "active"
})

mcp__claude-flow__agent_metrics({
  metric: "all"
})

Agent Assignment Patterns

Hierarchical Assignment:

# Level 0: Root coordinator
# Level 1: Department coordinators
# Level 2: Task executors
# Level 3: Specialized workers

npx claude-flow@alpha memory store \
  --key "swarm/hierarchy/level-0" \
  --value '{"agent":"coordinator-1","role":"root"}'

npx claude-flow@alpha memory store \
  --key "swarm/hierarchy/level-1" \
  --value '["agent-001","agent-002","agent-003"]'

Mesh Assignment:

# All agents are peers with direct connections
npx claude-flow@alpha memory store \
  --key "swarm/mesh/peers" \
  --value '["agent-001","agent-002","agent-003","agent-004"]'

Memory Patterns

# Store agent roster
npx claude-flow@alpha memory store \
  --key "swarm/agents/roster" \
  --value '{"total":8,"active":8,"idle":0,"roles":{"researcher":2,"coder":3,"reviewer":2,"optimizer":1}}'

# Store agent capabilities
npx claude-flow@alpha memory store \
  --key "swarm/agents/agent-001/capabilities" \
  --value '["analysis","patterns","research","documentation"]'

Validation Criteria

  1. Agent count matches requirements
  2. All agents responding to health checks
  3. Role assignments verified
  4. Coordination protocols established
  5. Memory state synchronized

Phase 4: Monitor Performance

Objective

Track swarm performance metrics, identify bottlenecks, and gather optimization data.

Evidence-Based Validation

  • Metrics collected continuously
  • Performance baseline established
  • Bottlenecks identified
  • Optimization opportunities logged

Scripts

# Monitor swarm status
npx claude-flow@alpha swarm monitor --interval 5 --duration 60

# Get agent metrics
npx claude-flow@alpha agent metrics --all --format json

# Check task performance
npx claude-flow@alpha task status --show-timing

# Analyze bottlenecks
npx claude-flow@alpha performance analyze --detect-bottlenecks

# Export metrics
npx claude-flow@alpha metrics export --output ./swarm-metrics.json

# Generate performance report
npx claude-flow@alpha performance report \
  --include-agents \
  --include-topology \
  --output ./performance-report.md

MCP Integration

// Monitor swarm in real-time
mcp__claude-flow__swarm_monitor({
  duration: 60,
  interval: 5
})

// Get comprehensive metrics
mcp__claude-flow__agent_metrics({
  metric: "all"
})

// Check task status
mcp__claude-flow__task_status({
  detailed: true
})

// Run performance benchmarks
mcp__claude-flow__benchmark_run({
  type: "swarm",
  iterations: 10
})

Key Metrics to Track

Swarm-Level Metrics:

  • Total throughput (tasks/minute)
  • Average latency per task
  • Agent utilization rate
  • Coordination overhead
  • Memory usage
  • Network latency

Agent-Level Metrics:

  • Task completion rate
  • Response time
  • Error rate
  • Resource consumption
  • Idle time percentage

Topology-Level Metrics:

  • Connection count
  • Message passing efficiency
  • Fault tolerance score
  • Scalability index

Memory Patterns

# Store performance snapshot
npx claude-flow@alpha memory store \
  --key "swarm/metrics/snapshot-$(date +%s)" \
  --value '{"throughput":145,"latency":38,"utilization":0.82,"errors":2}'

# Store bottleneck analysis
npx claude-flow@alpha memory store \
  --key "swarm/analysis/bottlenecks" \
  --value '{"coordinator-1":{"type":"high-load","severity":"medium","recommendation":"add-peer"}}'

Validation Criteria

  1. Metrics collected every 5 seconds
  2. No data loss or gaps
  3. Bottlenecks identified and documented
  4. Performance trends visible
  5. Alerts triggered for anomalies

Phase 5: Optimize Dynamically

Objective

Apply dynamic optimizations including topology switching, agent rebalancing, and resource allocation.

Evidence-Based Validation

  • Optimization strategies applied
  • Performance improvements measured
  • Topology switches successful
  • Resource allocation optimized
  • Final metrics show improvement

Scripts

# Analyze optimization opportunities
npx claude-flow@alpha performance analyze --recommend-optimizations

# Switch topology dynamically
npx claude-flow@alpha swarm reconfigure --topology mesh

# Rebalance agents
npx claude-flow@alpha swarm rebalance --strategy adaptive

# Scale swarm
npx claude-flow@alpha swarm scale --target-agents 12

# Apply neural optimizations
npx claude-flow@alpha neural train --pattern convergent

# Validate improvements
npx claude-flow@alpha performance compare \
  --baseline ./baseline-metrics.json \
  --current ./current-metrics.json

# Generate optimization report
npx claude-flow@alpha performance report \
  --show-improvements \
  --output ./optimization-report.md

MCP Integration

// Get optimization recommendations
mcp__claude-flow__benchmark_run({
  type: "swarm",
  iterations: 5
})

// Train neural patterns
mcp__claude-flow__neural_train({
  agentId: "adaptive-coordinator",
  iterations: 10
})

// Check neural patterns
mcp__claude-flow__neural_patterns({
  pattern: "all"
})

Optimization Strategies

Topology Switching:

# Switch from hierarchical to mesh if bottleneck detected
if [ "$COORDINATOR_LOAD" -gt 80 ]; then
  npx claude-flow@alpha swarm reconfigure --topology mesh
fi

# Switch to ring for sequential processing
if [ "$TASK_TYPE" == "pipeline" ]; then
  npx claude-flow@alpha swarm reconfigure --topology ring
fi

Agent Rebalancing:

# Identify underutilized agents
npx claude-flow@alpha agent metrics --filter "utilization<0.3"

# Reassign tasks from overloaded agents
npx claude-flow@alpha swarm rebalance --threshold 0.8

# Add agents if all are highly utilized
if [ "$AVG_UTILIZATION" -gt 0.9 ]; then
  npx claude-flow@alpha agent spawn --type optimizer --auto-assign
fi

Resource Allocation:

# Allocate more memory to high-priority agents
npx claude-flow@alpha agent configure \
  --agent-id "agent-001" \
  --memory-limit 2048MB

# Adjust coordination intervals
npx claude-flow@alpha swarm configure --sync-interval 3s

Memory Patterns

# Store optimization actions
npx claude-flow@alpha memory store \
  --key "swarm/optimization/actions" \
  --value '{"timestamp":"2025-10-30T10:30:00Z","action":"topology-switch","from":"hierarchical","to":"mesh","reason":"coordinator-bottleneck"}'

# Store improvement metrics
npx claude-flow@alpha memory store \
  --key "swarm/optimization/improvements" \
  --value '{"throughput":{"before":120,"after":175,"improvement":45.8},"latency":{"before":45,"after":32,"improvement":28.9}}'

Validation Criteria

  1. Performance metrics improved by ≥15%
  2. Bottlenecks eliminated or reduced
  3. Agent utilization balanced (±10%)
  4. No errors introduced by optimizations
  5. Topology switches completed successfully

Success Criteria

Overall Validation

  • Swarm infrastructure stable and operational
  • Optimal topology selected and configured
  • All agents deployed and coordinated
  • Performance monitored and optimized
  • Improvements measured and validated

Performance Targets

  • Throughput increase: ≥20%
  • Latency reduction: ≥15%
  • Agent utilization: 70-90%
  • Error rate: <2%
  • Coordination overhead: <10%

Common Issues & Solutions

Issue: Coordinator Bottleneck

Symptoms: High latency, coordinator CPU >90% Solution: Switch to mesh topology or add peer coordinators

Issue: Agent Underutilization

Symptoms: Many agents idle, unbalanced load Solution: Rebalance task assignment, reduce agent count

Issue: Topology Switch Failures

Symptoms: Errors during reconfiguration, lost connections Solution: Drain tasks before switching, validate agent states

Issue: Memory Synchronization Lag

Symptoms: Agents have inconsistent state Solution: Increase sync frequency, use distributed consensus

Best Practices

  1. Start Simple: Begin with hierarchical or star topology
  2. Monitor First: Collect baseline metrics before optimizing
  3. Gradual Scaling: Add agents incrementally
  4. Test Topology Switches: Validate in non-production first
  5. Document Patterns: Record successful configurations
  6. Use Neural Training: Improve pattern recognition
  7. Enable Auto-Healing: Configure self-recovery mechanisms
  8. Regular Health Checks: Monitor agent health continuously

Integration Points

With Other Skills

  • swarm-orchestration: For complex task coordination
  • performance-analysis: For deep performance insights
  • hive-mind: For collective intelligence patterns
  • cascade-orchestrator: For workflow chaining

With External Systems

  • GitHub Actions for CI/CD integration
  • Prometheus for metrics collection
  • Grafana for visualization
  • Slack/Discord for alerts

Next Steps

After completing this skill:

  1. Explore specific topology patterns in depth
  2. Implement custom coordination protocols
  3. Integrate with monitoring systems
  4. Create domain-specific swarm templates
  5. Experiment with hybrid topologies

References

快速安装

/plugin add https://github.com/DNYoussef/ai-chrome-extension/tree/main/when-using-advanced-swarm-use-swarm-advanced

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

DNYoussef/ai-chrome-extension
路径: .claude/skills/workflow/when-using-advanced-swarm-use-swarm-advanced

相关推荐技能