MCP HubMCP Hub
返回技能列表

performance-analysis

natea
更新于 Today
193 次查看
1
2
1
在 GitHub 上查看
其他performancebottleneckoptimizationprofilingmetricsanalysis

关于

This skill provides comprehensive performance analysis for Claude Flow swarms, detecting bottlenecks and profiling operations. It generates detailed reports and offers AI-powered optimization recommendations to improve swarm performance. Use it when you need to monitor, analyze, and optimize the efficiency of your Claude Flow implementations.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/natea/fitfinder
Git 克隆备选方式
git clone https://github.com/natea/fitfinder.git ~/.claude/skills/performance-analysis

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Performance Analysis Skill

Comprehensive performance analysis suite for identifying bottlenecks, profiling swarm operations, generating detailed reports, and providing actionable optimization recommendations.

Overview

This skill consolidates all performance analysis capabilities:

  • Bottleneck Detection: Identify performance bottlenecks across communication, processing, memory, and network
  • Performance Profiling: Real-time monitoring and historical analysis of swarm operations
  • Report Generation: Create comprehensive performance reports in multiple formats
  • Optimization Recommendations: AI-powered suggestions for improving performance

Quick Start

Basic Bottleneck Detection

npx claude-flow bottleneck detect

Generate Performance Report

npx claude-flow analysis performance-report --format html --include-metrics

Analyze and Auto-Fix

npx claude-flow bottleneck detect --fix --threshold 15

Core Capabilities

1. Bottleneck Detection

Command Syntax

npx claude-flow bottleneck detect [options]

Options

  • --swarm-id, -s <id> - Analyze specific swarm (default: current)
  • --time-range, -t <range> - Analysis period: 1h, 24h, 7d, all (default: 1h)
  • --threshold <percent> - Bottleneck threshold percentage (default: 20)
  • --export, -e <file> - Export analysis to file
  • --fix - Apply automatic optimizations

Usage Examples

# Basic detection for current swarm
npx claude-flow bottleneck detect

# Analyze specific swarm over 24 hours
npx claude-flow bottleneck detect --swarm-id swarm-123 -t 24h

# Export detailed analysis
npx claude-flow bottleneck detect -t 24h -e bottlenecks.json

# Auto-fix detected issues
npx claude-flow bottleneck detect --fix --threshold 15

# Low threshold for sensitive detection
npx claude-flow bottleneck detect --threshold 10 --export critical-issues.json

Metrics Analyzed

Communication Bottlenecks:

  • Message queue delays
  • Agent response times
  • Coordination overhead
  • Memory access patterns
  • Inter-agent communication latency

Processing Bottlenecks:

  • Task completion times
  • Agent utilization rates
  • Parallel execution efficiency
  • Resource contention
  • CPU/memory usage patterns

Memory Bottlenecks:

  • Cache hit rates
  • Memory access patterns
  • Storage I/O performance
  • Neural pattern loading times
  • Memory allocation efficiency

Network Bottlenecks:

  • API call latency
  • MCP communication delays
  • External service timeouts
  • Concurrent request limits
  • Network throughput issues

Output Format

🔍 Bottleneck Analysis Report
━━━━━━━━━━━━━━━━━━━━━━━━━━━

📊 Summary
├── Time Range: Last 1 hour
├── Agents Analyzed: 6
├── Tasks Processed: 42
└── Critical Issues: 2

🚨 Critical Bottlenecks
1. Agent Communication (35% impact)
   └── coordinator → coder-1 messages delayed by 2.3s avg

2. Memory Access (28% impact)
   └── Neural pattern loading taking 1.8s per access

⚠️ Warning Bottlenecks
1. Task Queue (18% impact)
   └── 5 tasks waiting > 10s for assignment

💡 Recommendations
1. Switch to hierarchical topology (est. 40% improvement)
2. Enable memory caching (est. 25% improvement)
3. Increase agent concurrency to 8 (est. 20% improvement)

✅ Quick Fixes Available
Run with --fix to apply:
- Enable smart caching
- Optimize message routing
- Adjust agent priorities

2. Performance Profiling

Real-time Detection

Automatic analysis during task execution:

  • Execution time vs. complexity
  • Agent utilization rates
  • Resource constraints
  • Operation patterns

Common Bottleneck Patterns

Time Bottlenecks:

  • Tasks taking > 5 minutes
  • Sequential operations that could parallelize
  • Redundant file operations
  • Inefficient algorithm implementations

Coordination Bottlenecks:

  • Single agent for complex tasks
  • Unbalanced agent workloads
  • Poor topology selection
  • Excessive synchronization points

Resource Bottlenecks:

  • High operation count (> 100)
  • Memory constraints
  • I/O limitations
  • Thread pool saturation

MCP Integration

// Check for bottlenecks in Claude Code
mcp__claude-flow__bottleneck_detect({
  timeRange: "1h",
  threshold: 20,
  autoFix: false
})

// Get detailed task results with bottleneck analysis
mcp__claude-flow__task_results({
  taskId: "task-123",
  format: "detailed"
})

Result Format:

{
  "bottlenecks": [
    {
      "type": "coordination",
      "severity": "high",
      "description": "Single agent used for complex task",
      "recommendation": "Spawn specialized agents for parallel work",
      "impact": "35%",
      "affectedComponents": ["coordinator", "coder-1"]
    }
  ],
  "improvements": [
    {
      "area": "execution_time",
      "suggestion": "Use parallel task execution",
      "expectedImprovement": "30-50% time reduction",
      "implementationSteps": [
        "Split task into smaller units",
        "Spawn 3-4 specialized agents",
        "Use mesh topology for coordination"
      ]
    }
  ],
  "metrics": {
    "avgExecutionTime": "142s",
    "agentUtilization": "67%",
    "cacheHitRate": "82%",
    "parallelizationFactor": 1.2
  }
}

3. Report Generation

Command Syntax

npx claude-flow analysis performance-report [options]

Options

  • --format <type> - Report format: json, html, markdown (default: markdown)
  • --include-metrics - Include detailed metrics and charts
  • --compare <id> - Compare with previous swarm
  • --time-range <range> - Analysis period: 1h, 24h, 7d, 30d, all
  • --output <file> - Output file path
  • --sections <list> - Comma-separated sections to include

Report Sections

  1. Executive Summary

    • Overall performance score
    • Key metrics overview
    • Critical findings
  2. Swarm Overview

    • Topology configuration
    • Agent distribution
    • Task statistics
  3. Performance Metrics

    • Execution times
    • Throughput analysis
    • Resource utilization
    • Latency breakdown
  4. Bottleneck Analysis

    • Identified bottlenecks
    • Impact assessment
    • Optimization priorities
  5. Comparative Analysis (when --compare used)

    • Performance trends
    • Improvement metrics
    • Regression detection
  6. Recommendations

    • Prioritized action items
    • Expected improvements
    • Implementation guidance

Usage Examples

# Generate HTML report with all metrics
npx claude-flow analysis performance-report --format html --include-metrics

# Compare current swarm with previous
npx claude-flow analysis performance-report --compare swarm-123 --format markdown

# Custom output with specific sections
npx claude-flow analysis performance-report \
  --sections summary,metrics,recommendations \
  --output reports/perf-analysis.html \
  --format html

# Weekly performance report
npx claude-flow analysis performance-report \
  --time-range 7d \
  --include-metrics \
  --format markdown \
  --output docs/weekly-performance.md

# JSON format for CI/CD integration
npx claude-flow analysis performance-report \
  --format json \
  --output build/performance.json

Sample Markdown Report

# Performance Analysis Report

## Executive Summary
- **Overall Score**: 87/100
- **Analysis Period**: Last 24 hours
- **Swarms Analyzed**: 3
- **Critical Issues**: 1

## Key Metrics
| Metric | Value | Trend | Target |
|--------|-------|-------|--------|
| Avg Task Time | 42s | ↓ 12% | 35s |
| Agent Utilization | 78% | ↑ 5% | 85% |
| Cache Hit Rate | 91% | → | 90% |
| Parallel Efficiency | 2.3x | ↑ 0.4x | 2.5x |

## Bottleneck Analysis
### Critical
1. **Agent Communication Delay** (Impact: 35%)
   - Coordinator → Coder messages delayed by 2.3s avg
   - **Fix**: Switch to hierarchical topology

### Warnings
1. **Memory Access Pattern** (Impact: 18%)
   - Neural pattern loading: 1.8s per access
   - **Fix**: Enable memory caching

## Recommendations
1. **High Priority**: Switch to hierarchical topology (40% improvement)
2. **Medium Priority**: Enable memory caching (25% improvement)
3. **Low Priority**: Increase agent concurrency to 8 (20% improvement)

4. Optimization Recommendations

Automatic Fixes

When using --fix, the following optimizations may be applied:

1. Topology Optimization

  • Switch to more efficient topology (mesh → hierarchical)
  • Adjust communication patterns
  • Reduce coordination overhead
  • Optimize message routing

2. Caching Enhancement

  • Enable memory caching
  • Optimize cache strategies
  • Preload common patterns
  • Implement cache warming

3. Concurrency Tuning

  • Adjust agent counts
  • Optimize parallel execution
  • Balance workload distribution
  • Implement load balancing

4. Priority Adjustment

  • Reorder task queues
  • Prioritize critical paths
  • Reduce wait times
  • Implement fair scheduling

5. Resource Optimization

  • Optimize memory usage
  • Reduce I/O operations
  • Batch API calls
  • Implement connection pooling

Performance Impact

Typical improvements after bottleneck resolution:

  • Communication: 30-50% faster message delivery
  • Processing: 20-40% reduced task completion time
  • Memory: 40-60% fewer cache misses
  • Network: 25-45% reduced API latency
  • Overall: 25-45% total performance improvement

Advanced Usage

Continuous Monitoring

# Monitor performance in real-time
npx claude-flow swarm monitor --interval 5

# Generate hourly reports
while true; do
  npx claude-flow analysis performance-report \
    --format json \
    --output logs/perf-$(date +%Y%m%d-%H%M).json
  sleep 3600
done

CI/CD Integration

# .github/workflows/performance.yml
name: Performance Analysis
on: [push, pull_request]

jobs:
  analyze:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2
      - name: Run Performance Analysis
        run: |
          npx claude-flow analysis performance-report \
            --format json \
            --output performance.json
      - name: Check Performance Thresholds
        run: |
          npx claude-flow bottleneck detect \
            --threshold 15 \
            --export bottlenecks.json
      - name: Upload Reports
        uses: actions/upload-artifact@v2
        with:
          name: performance-reports
          path: |
            performance.json
            bottlenecks.json

Custom Analysis Scripts

// scripts/analyze-performance.js
const { exec } = require('child_process');
const fs = require('fs');

async function analyzePerformance() {
  // Run bottleneck detection
  const bottlenecks = await runCommand(
    'npx claude-flow bottleneck detect --format json'
  );

  // Generate performance report
  const report = await runCommand(
    'npx claude-flow analysis performance-report --format json'
  );

  // Analyze results
  const analysis = {
    bottlenecks: JSON.parse(bottlenecks),
    performance: JSON.parse(report),
    timestamp: new Date().toISOString()
  };

  // Save combined analysis
  fs.writeFileSync(
    'analysis/combined-report.json',
    JSON.stringify(analysis, null, 2)
  );

  // Generate alerts if needed
  if (analysis.bottlenecks.critical.length > 0) {
    console.error('CRITICAL: Performance bottlenecks detected!');
    process.exit(1);
  }
}

function runCommand(cmd) {
  return new Promise((resolve, reject) => {
    exec(cmd, (error, stdout, stderr) => {
      if (error) reject(error);
      else resolve(stdout);
    });
  });
}

analyzePerformance().catch(console.error);

Best Practices

1. Regular Analysis

  • Run bottleneck detection after major changes
  • Generate weekly performance reports
  • Monitor trends over time
  • Set up automated alerts

2. Threshold Tuning

  • Start with default threshold (20%)
  • Lower for production systems (10-15%)
  • Higher for development (25-30%)
  • Adjust based on requirements

3. Fix Strategy

  • Always review before applying --fix
  • Test fixes in development first
  • Apply fixes incrementally
  • Monitor impact after changes

4. Report Integration

  • Include in documentation
  • Share with team regularly
  • Track improvements over time
  • Use for capacity planning

5. Continuous Optimization

  • Learn from each analysis
  • Build performance budgets
  • Establish baselines
  • Set improvement goals

Troubleshooting

Common Issues

High Memory Usage

# Analyze memory bottlenecks
npx claude-flow bottleneck detect --threshold 10

# Check cache performance
npx claude-flow cache manage --action stats

# Review memory metrics
npx claude-flow memory usage

Slow Task Execution

# Identify slow tasks
npx claude-flow task status --detailed

# Analyze coordination overhead
npx claude-flow bottleneck detect --time-range 1h

# Check agent utilization
npx claude-flow agent metrics

Poor Cache Performance

# Analyze cache hit rates
npx claude-flow analysis performance-report --sections metrics

# Review cache strategy
npx claude-flow cache manage --action analyze

# Enable cache warming
npx claude-flow bottleneck detect --fix

Integration with Other Skills

  • swarm-orchestration: Use performance data to optimize topology
  • memory-management: Improve cache strategies based on analysis
  • task-coordination: Adjust scheduling based on bottlenecks
  • neural-training: Train patterns from performance data

Related Commands

  • npx claude-flow swarm monitor - Real-time monitoring
  • npx claude-flow token usage - Token optimization analysis
  • npx claude-flow cache manage - Cache optimization
  • npx claude-flow agent metrics - Agent performance metrics
  • npx claude-flow task status - Task execution analysis

See Also


Version: 1.0.0 Last Updated: 2025-10-19 Maintainer: Claude Flow Team

GitHub 仓库

natea/fitfinder
路径: .claude/skills/performance-analysis

相关推荐技能

when-optimizing-prompts-use-prompt-architect

其他

该Skill为开发者提供基于证据的提示词分析与优化框架,帮助解决AI响应质量差、输出不一致等问题。它能识别并消除提示词中的反模式,通过A/B测试验证优化效果。适用于需要创建新提示、重构现有提示或提升AI系统响应质量的开发场景。

查看技能

deepspeed

设计

该Skill为开发者提供DeepSpeed分布式训练的专家指导,涵盖ZeRO优化阶段、流水线并行和混合精度训练等核心功能。它适用于实现DeepSpeed解决方案、调试代码或学习最佳实践的场景。通过该Skill,开发者能快速获得API使用、特性配置和性能优化的专业支持。

查看技能

Verification & Quality Assurance

其他

该Skill为开发者提供自动化代码质量验证和可靠性保障系统,通过实时真值评分(0-1分制)和代码质量检查确保输出质量。当评分低于0.95阈值时会自动回滚问题代码,有效维护代码库稳定性。特别适合集成至CI/CD流程,用于监控Agent输出质量和保障项目可靠性。

查看技能

when-optimizing-agent-learning-use-reasoningbank-intelligence

其他

该Skill通过ReasoningBank实现自适应学习,帮助开发者在优化智能体时进行模式识别和策略调优。它适用于需要提升重复任务效率或改进决策策略的场景,可输出训练模型和优化建议。关键能力包括持续性能改进和模式库构建,依赖claude-flow与reasoningbank组件。

查看技能