MCP HubMCP Hub
返回技能列表

cost-optimization

lifangda
更新于 Today
453 次查看
11
11
在 GitHub 上查看
其他general

关于

This Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/lifangda/claude-plugins
Git 克隆备选方式
git clone https://github.com/lifangda/claude-plugins.git ~/.claude/skills/cost-optimization

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Cloud Cost Optimization

Strategies and patterns for optimizing cloud costs across AWS, Azure, and GCP.

Purpose

Implement systematic cost optimization strategies to reduce cloud spending while maintaining performance and reliability.

When to Use

  • Reduce cloud spending
  • Right-size resources
  • Implement cost governance
  • Optimize multi-cloud costs
  • Meet budget constraints

Cost Optimization Framework

1. Visibility

  • Implement cost allocation tags
  • Use cloud cost management tools
  • Set up budget alerts
  • Create cost dashboards

2. Right-Sizing

  • Analyze resource utilization
  • Downsize over-provisioned resources
  • Use auto-scaling
  • Remove idle resources

3. Pricing Models

  • Use reserved capacity
  • Leverage spot/preemptible instances
  • Implement savings plans
  • Use committed use discounts

4. Architecture Optimization

  • Use managed services
  • Implement caching
  • Optimize data transfer
  • Use lifecycle policies

AWS Cost Optimization

Reserved Instances

Savings: 30-72% vs On-Demand
Term: 1 or 3 years
Payment: All/Partial/No upfront
Flexibility: Standard or Convertible

Savings Plans

Compute Savings Plans: 66% savings
EC2 Instance Savings Plans: 72% savings
Applies to: EC2, Fargate, Lambda
Flexible across: Instance families, regions, OS

Spot Instances

Savings: Up to 90% vs On-Demand
Best for: Batch jobs, CI/CD, stateless workloads
Risk: 2-minute interruption notice
Strategy: Mix with On-Demand for resilience

S3 Cost Optimization

resource "aws_s3_bucket_lifecycle_configuration" "example" {
  bucket = aws_s3_bucket.example.id

  rule {
    id     = "transition-to-ia"
    status = "Enabled"

    transition {
      days          = 30
      storage_class = "STANDARD_IA"
    }

    transition {
      days          = 90
      storage_class = "GLACIER"
    }

    expiration {
      days = 365
    }
  }
}

Azure Cost Optimization

Reserved VM Instances

  • 1 or 3 year terms
  • Up to 72% savings
  • Flexible sizing
  • Exchangeable

Azure Hybrid Benefit

  • Use existing Windows Server licenses
  • Up to 80% savings with RI
  • Available for Windows and SQL Server

Azure Advisor Recommendations

  • Right-size VMs
  • Delete unused resources
  • Use reserved capacity
  • Optimize storage

GCP Cost Optimization

Committed Use Discounts

  • 1 or 3 year commitment
  • Up to 57% savings
  • Applies to vCPUs and memory
  • Resource-based or spend-based

Sustained Use Discounts

  • Automatic discounts
  • Up to 30% for running instances
  • No commitment required
  • Applies to Compute Engine, GKE

Preemptible VMs

  • Up to 80% savings
  • 24-hour maximum runtime
  • Best for batch workloads

Tagging Strategy

AWS Tagging

locals {
  common_tags = {
    Environment = "production"
    Project     = "my-project"
    CostCenter  = "engineering"
    Owner       = "[email protected]"
    ManagedBy   = "terraform"
  }
}

resource "aws_instance" "example" {
  ami           = "ami-12345678"
  instance_type = "t3.medium"

  tags = merge(
    local.common_tags,
    {
      Name = "web-server"
    }
  )
}

Reference: See references/tagging-standards.md

Cost Monitoring

Budget Alerts

# AWS Budget
resource "aws_budgets_budget" "monthly" {
  name              = "monthly-budget"
  budget_type       = "COST"
  limit_amount      = "1000"
  limit_unit        = "USD"
  time_period_start = "2024-01-01_00:00"
  time_unit         = "MONTHLY"

  notification {
    comparison_operator        = "GREATER_THAN"
    threshold                  = 80
    threshold_type            = "PERCENTAGE"
    notification_type         = "ACTUAL"
    subscriber_email_addresses = ["[email protected]"]
  }
}

Cost Anomaly Detection

  • AWS Cost Anomaly Detection
  • Azure Cost Management alerts
  • GCP Budget alerts

Architecture Patterns

Pattern 1: Serverless First

  • Use Lambda/Functions for event-driven
  • Pay only for execution time
  • Auto-scaling included
  • No idle costs

Pattern 2: Right-Sized Databases

Development: t3.small RDS
Staging: t3.large RDS
Production: r6g.2xlarge RDS with read replicas

Pattern 3: Multi-Tier Storage

Hot data: S3 Standard
Warm data: S3 Standard-IA (30 days)
Cold data: S3 Glacier (90 days)
Archive: S3 Deep Archive (365 days)

Pattern 4: Auto-Scaling

resource "aws_autoscaling_policy" "scale_up" {
  name                   = "scale-up"
  scaling_adjustment     = 2
  adjustment_type        = "ChangeInCapacity"
  cooldown              = 300
  autoscaling_group_name = aws_autoscaling_group.main.name
}

resource "aws_cloudwatch_metric_alarm" "cpu_high" {
  alarm_name          = "cpu-high"
  comparison_operator = "GreaterThanThreshold"
  evaluation_periods  = "2"
  metric_name         = "CPUUtilization"
  namespace           = "AWS/EC2"
  period              = "60"
  statistic           = "Average"
  threshold           = "80"
  alarm_actions       = [aws_autoscaling_policy.scale_up.arn]
}

Cost Optimization Checklist

  • Implement cost allocation tags
  • Delete unused resources (EBS, EIPs, snapshots)
  • Right-size instances based on utilization
  • Use reserved capacity for steady workloads
  • Implement auto-scaling
  • Optimize storage classes
  • Use lifecycle policies
  • Enable cost anomaly detection
  • Set budget alerts
  • Review costs weekly
  • Use spot/preemptible instances
  • Optimize data transfer costs
  • Implement caching layers
  • Use managed services
  • Monitor and optimize continuously

Tools

  • AWS: Cost Explorer, Cost Anomaly Detection, Compute Optimizer
  • Azure: Cost Management, Advisor
  • GCP: Cost Management, Recommender
  • Multi-cloud: CloudHealth, Cloudability, Kubecost

Reference Files

  • references/tagging-standards.md - Tagging conventions
  • assets/cost-analysis-template.xlsx - Cost analysis spreadsheet

Related Skills

  • terraform-module-library - For resource provisioning
  • multi-cloud-architecture - For cloud selection

GitHub 仓库

lifangda/claude-plugins
路径: cli-tool/skills-library/cloud-infrastructure/cost-optimization

相关推荐技能

algorithmic-art

该Skill使用p5.js创建包含种子随机性和交互参数探索的算法艺术,适用于生成艺术、流场或粒子系统等需求。它能自动生成算法哲学文档(.md)和对应的交互式艺术代码(.html/.js),确保作品原创性避免侵权。开发者可通过定义计算美学理念快速获得可交互的艺术实现方案。

查看技能

subagent-driven-development

开发

该Skill用于在当前会话中执行包含独立任务的实施计划,它会为每个任务分派一个全新的子代理并在任务间进行代码审查。这种"全新子代理+任务间审查"的模式既能保障代码质量,又能实现快速迭代。适合需要在当前会话中连续执行独立任务,并希望在每个任务后都有质量把关的开发场景。

查看技能

executing-plans

设计

该Skill用于当开发者提供完整实施计划时,以受控批次方式执行代码实现。它会先审阅计划并提出疑问,然后分批次执行任务(默认每批3个任务),并在批次间暂停等待审查。关键特性包括分批次执行、内置检查点和架构师审查机制,确保复杂系统实现的可控性。

查看技能

Git Commit Helper

Git Commit Helper能通过分析git diff自动生成规范的提交信息,适用于开发者编写提交消息或审查暂存区变更时。它能识别代码变更类型并自动匹配Conventional Commits规范,提供包含功能类型、作用域和描述的标准化消息。开发者只需提供git diff内容即可获得即用型的提交消息建议。

查看技能