cost-optimization
关于
This Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.
技能文档
Cloud Cost Optimization
Strategies and patterns for optimizing cloud costs across AWS, Azure, and GCP.
Purpose
Implement systematic cost optimization strategies to reduce cloud spending while maintaining performance and reliability.
When to Use
- Reduce cloud spending
- Right-size resources
- Implement cost governance
- Optimize multi-cloud costs
- Meet budget constraints
Cost Optimization Framework
1. Visibility
- Implement cost allocation tags
- Use cloud cost management tools
- Set up budget alerts
- Create cost dashboards
2. Right-Sizing
- Analyze resource utilization
- Downsize over-provisioned resources
- Use auto-scaling
- Remove idle resources
3. Pricing Models
- Use reserved capacity
- Leverage spot/preemptible instances
- Implement savings plans
- Use committed use discounts
4. Architecture Optimization
- Use managed services
- Implement caching
- Optimize data transfer
- Use lifecycle policies
AWS Cost Optimization
Reserved Instances
Savings: 30-72% vs On-Demand
Term: 1 or 3 years
Payment: All/Partial/No upfront
Flexibility: Standard or Convertible
Savings Plans
Compute Savings Plans: 66% savings
EC2 Instance Savings Plans: 72% savings
Applies to: EC2, Fargate, Lambda
Flexible across: Instance families, regions, OS
Spot Instances
Savings: Up to 90% vs On-Demand
Best for: Batch jobs, CI/CD, stateless workloads
Risk: 2-minute interruption notice
Strategy: Mix with On-Demand for resilience
S3 Cost Optimization
resource "aws_s3_bucket_lifecycle_configuration" "example" {
bucket = aws_s3_bucket.example.id
rule {
id = "transition-to-ia"
status = "Enabled"
transition {
days = 30
storage_class = "STANDARD_IA"
}
transition {
days = 90
storage_class = "GLACIER"
}
expiration {
days = 365
}
}
}
Azure Cost Optimization
Reserved VM Instances
- 1 or 3 year terms
- Up to 72% savings
- Flexible sizing
- Exchangeable
Azure Hybrid Benefit
- Use existing Windows Server licenses
- Up to 80% savings with RI
- Available for Windows and SQL Server
Azure Advisor Recommendations
- Right-size VMs
- Delete unused resources
- Use reserved capacity
- Optimize storage
GCP Cost Optimization
Committed Use Discounts
- 1 or 3 year commitment
- Up to 57% savings
- Applies to vCPUs and memory
- Resource-based or spend-based
Sustained Use Discounts
- Automatic discounts
- Up to 30% for running instances
- No commitment required
- Applies to Compute Engine, GKE
Preemptible VMs
- Up to 80% savings
- 24-hour maximum runtime
- Best for batch workloads
Tagging Strategy
AWS Tagging
locals {
common_tags = {
Environment = "production"
Project = "my-project"
CostCenter = "engineering"
Owner = "[email protected]"
ManagedBy = "terraform"
}
}
resource "aws_instance" "example" {
ami = "ami-12345678"
instance_type = "t3.medium"
tags = merge(
local.common_tags,
{
Name = "web-server"
}
)
}
Reference: See references/tagging-standards.md
Cost Monitoring
Budget Alerts
# AWS Budget
resource "aws_budgets_budget" "monthly" {
name = "monthly-budget"
budget_type = "COST"
limit_amount = "1000"
limit_unit = "USD"
time_period_start = "2024-01-01_00:00"
time_unit = "MONTHLY"
notification {
comparison_operator = "GREATER_THAN"
threshold = 80
threshold_type = "PERCENTAGE"
notification_type = "ACTUAL"
subscriber_email_addresses = ["[email protected]"]
}
}
Cost Anomaly Detection
- AWS Cost Anomaly Detection
- Azure Cost Management alerts
- GCP Budget alerts
Architecture Patterns
Pattern 1: Serverless First
- Use Lambda/Functions for event-driven
- Pay only for execution time
- Auto-scaling included
- No idle costs
Pattern 2: Right-Sized Databases
Development: t3.small RDS
Staging: t3.large RDS
Production: r6g.2xlarge RDS with read replicas
Pattern 3: Multi-Tier Storage
Hot data: S3 Standard
Warm data: S3 Standard-IA (30 days)
Cold data: S3 Glacier (90 days)
Archive: S3 Deep Archive (365 days)
Pattern 4: Auto-Scaling
resource "aws_autoscaling_policy" "scale_up" {
name = "scale-up"
scaling_adjustment = 2
adjustment_type = "ChangeInCapacity"
cooldown = 300
autoscaling_group_name = aws_autoscaling_group.main.name
}
resource "aws_cloudwatch_metric_alarm" "cpu_high" {
alarm_name = "cpu-high"
comparison_operator = "GreaterThanThreshold"
evaluation_periods = "2"
metric_name = "CPUUtilization"
namespace = "AWS/EC2"
period = "60"
statistic = "Average"
threshold = "80"
alarm_actions = [aws_autoscaling_policy.scale_up.arn]
}
Cost Optimization Checklist
- Implement cost allocation tags
- Delete unused resources (EBS, EIPs, snapshots)
- Right-size instances based on utilization
- Use reserved capacity for steady workloads
- Implement auto-scaling
- Optimize storage classes
- Use lifecycle policies
- Enable cost anomaly detection
- Set budget alerts
- Review costs weekly
- Use spot/preemptible instances
- Optimize data transfer costs
- Implement caching layers
- Use managed services
- Monitor and optimize continuously
Tools
- AWS: Cost Explorer, Cost Anomaly Detection, Compute Optimizer
- Azure: Cost Management, Advisor
- GCP: Cost Management, Recommender
- Multi-cloud: CloudHealth, Cloudability, Kubecost
Reference Files
references/tagging-standards.md- Tagging conventionsassets/cost-analysis-template.xlsx- Cost analysis spreadsheet
Related Skills
terraform-module-library- For resource provisioningmulti-cloud-architecture- For cloud selection
快速安装
/plugin add https://github.com/lifangda/claude-plugins/tree/main/cost-optimization在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
analyzing-dependencies
元这个Claude Skill能自动分析项目依赖的安全漏洞、过时包和许可证合规问题。它支持npm、pip、composer、gem和go modules等多种包管理器,帮助开发者识别潜在风险。当您需要检查依赖安全性、更新过时包或确保许可证兼容时,可使用"check dependencies"等触发短语来调用。
work-execution-principles
其他这个Claude Skill为开发者提供了一套通用的工作执行原则,涵盖任务分解、范围确定、测试策略和依赖管理。它确保开发活动中的一致质量标准,适用于代码审查、工作规划和架构决策等场景。该技能与所有编程语言和框架兼容,帮助开发者系统化地组织代码结构和定义工作边界。
Git Commit Helper
元Git Commit Helper能通过分析git diff自动生成规范的提交信息,适用于开发者编写提交消息或审查暂存区变更时。它能识别代码变更类型并自动匹配Conventional Commits规范,提供包含功能类型、作用域和描述的标准化消息。开发者只需提供git diff内容即可获得即用型的提交消息建议。
nextjs
开发This Next.js Skill provides architectural standards and BFF patterns for Next.js 15.5+ projects using App Router. It enforces clear server/client component separation, implements Server Actions and Route Handlers, and ensures performance optimization with SEO best practices. Use it when designing App Router structures, implementing data fetching strategies, or building BFF architectures.
