MCP HubMCP Hub
返回技能列表

cost-optimization

lifangda
更新于 Today
42 次查看
11
11
在 GitHub 上查看
其他general

关于

This Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.

技能文档

Cloud Cost Optimization

Strategies and patterns for optimizing cloud costs across AWS, Azure, and GCP.

Purpose

Implement systematic cost optimization strategies to reduce cloud spending while maintaining performance and reliability.

When to Use

  • Reduce cloud spending
  • Right-size resources
  • Implement cost governance
  • Optimize multi-cloud costs
  • Meet budget constraints

Cost Optimization Framework

1. Visibility

  • Implement cost allocation tags
  • Use cloud cost management tools
  • Set up budget alerts
  • Create cost dashboards

2. Right-Sizing

  • Analyze resource utilization
  • Downsize over-provisioned resources
  • Use auto-scaling
  • Remove idle resources

3. Pricing Models

  • Use reserved capacity
  • Leverage spot/preemptible instances
  • Implement savings plans
  • Use committed use discounts

4. Architecture Optimization

  • Use managed services
  • Implement caching
  • Optimize data transfer
  • Use lifecycle policies

AWS Cost Optimization

Reserved Instances

Savings: 30-72% vs On-Demand
Term: 1 or 3 years
Payment: All/Partial/No upfront
Flexibility: Standard or Convertible

Savings Plans

Compute Savings Plans: 66% savings
EC2 Instance Savings Plans: 72% savings
Applies to: EC2, Fargate, Lambda
Flexible across: Instance families, regions, OS

Spot Instances

Savings: Up to 90% vs On-Demand
Best for: Batch jobs, CI/CD, stateless workloads
Risk: 2-minute interruption notice
Strategy: Mix with On-Demand for resilience

S3 Cost Optimization

resource "aws_s3_bucket_lifecycle_configuration" "example" {
  bucket = aws_s3_bucket.example.id

  rule {
    id     = "transition-to-ia"
    status = "Enabled"

    transition {
      days          = 30
      storage_class = "STANDARD_IA"
    }

    transition {
      days          = 90
      storage_class = "GLACIER"
    }

    expiration {
      days = 365
    }
  }
}

Azure Cost Optimization

Reserved VM Instances

  • 1 or 3 year terms
  • Up to 72% savings
  • Flexible sizing
  • Exchangeable

Azure Hybrid Benefit

  • Use existing Windows Server licenses
  • Up to 80% savings with RI
  • Available for Windows and SQL Server

Azure Advisor Recommendations

  • Right-size VMs
  • Delete unused resources
  • Use reserved capacity
  • Optimize storage

GCP Cost Optimization

Committed Use Discounts

  • 1 or 3 year commitment
  • Up to 57% savings
  • Applies to vCPUs and memory
  • Resource-based or spend-based

Sustained Use Discounts

  • Automatic discounts
  • Up to 30% for running instances
  • No commitment required
  • Applies to Compute Engine, GKE

Preemptible VMs

  • Up to 80% savings
  • 24-hour maximum runtime
  • Best for batch workloads

Tagging Strategy

AWS Tagging

locals {
  common_tags = {
    Environment = "production"
    Project     = "my-project"
    CostCenter  = "engineering"
    Owner       = "[email protected]"
    ManagedBy   = "terraform"
  }
}

resource "aws_instance" "example" {
  ami           = "ami-12345678"
  instance_type = "t3.medium"

  tags = merge(
    local.common_tags,
    {
      Name = "web-server"
    }
  )
}

Reference: See references/tagging-standards.md

Cost Monitoring

Budget Alerts

# AWS Budget
resource "aws_budgets_budget" "monthly" {
  name              = "monthly-budget"
  budget_type       = "COST"
  limit_amount      = "1000"
  limit_unit        = "USD"
  time_period_start = "2024-01-01_00:00"
  time_unit         = "MONTHLY"

  notification {
    comparison_operator        = "GREATER_THAN"
    threshold                  = 80
    threshold_type            = "PERCENTAGE"
    notification_type         = "ACTUAL"
    subscriber_email_addresses = ["[email protected]"]
  }
}

Cost Anomaly Detection

  • AWS Cost Anomaly Detection
  • Azure Cost Management alerts
  • GCP Budget alerts

Architecture Patterns

Pattern 1: Serverless First

  • Use Lambda/Functions for event-driven
  • Pay only for execution time
  • Auto-scaling included
  • No idle costs

Pattern 2: Right-Sized Databases

Development: t3.small RDS
Staging: t3.large RDS
Production: r6g.2xlarge RDS with read replicas

Pattern 3: Multi-Tier Storage

Hot data: S3 Standard
Warm data: S3 Standard-IA (30 days)
Cold data: S3 Glacier (90 days)
Archive: S3 Deep Archive (365 days)

Pattern 4: Auto-Scaling

resource "aws_autoscaling_policy" "scale_up" {
  name                   = "scale-up"
  scaling_adjustment     = 2
  adjustment_type        = "ChangeInCapacity"
  cooldown              = 300
  autoscaling_group_name = aws_autoscaling_group.main.name
}

resource "aws_cloudwatch_metric_alarm" "cpu_high" {
  alarm_name          = "cpu-high"
  comparison_operator = "GreaterThanThreshold"
  evaluation_periods  = "2"
  metric_name         = "CPUUtilization"
  namespace           = "AWS/EC2"
  period              = "60"
  statistic           = "Average"
  threshold           = "80"
  alarm_actions       = [aws_autoscaling_policy.scale_up.arn]
}

Cost Optimization Checklist

  • Implement cost allocation tags
  • Delete unused resources (EBS, EIPs, snapshots)
  • Right-size instances based on utilization
  • Use reserved capacity for steady workloads
  • Implement auto-scaling
  • Optimize storage classes
  • Use lifecycle policies
  • Enable cost anomaly detection
  • Set budget alerts
  • Review costs weekly
  • Use spot/preemptible instances
  • Optimize data transfer costs
  • Implement caching layers
  • Use managed services
  • Monitor and optimize continuously

Tools

  • AWS: Cost Explorer, Cost Anomaly Detection, Compute Optimizer
  • Azure: Cost Management, Advisor
  • GCP: Cost Management, Recommender
  • Multi-cloud: CloudHealth, Cloudability, Kubecost

Reference Files

  • references/tagging-standards.md - Tagging conventions
  • assets/cost-analysis-template.xlsx - Cost analysis spreadsheet

Related Skills

  • terraform-module-library - For resource provisioning
  • multi-cloud-architecture - For cloud selection

快速安装

/plugin add https://github.com/lifangda/claude-plugins/tree/main/cost-optimization

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

lifangda/claude-plugins
路径: cli-tool/skills-library/cloud-infrastructure/cost-optimization

相关推荐技能

analyzing-dependencies

这个Claude Skill能自动分析项目依赖的安全漏洞、过时包和许可证合规问题。它支持npm、pip、composer、gem和go modules等多种包管理器,帮助开发者识别潜在风险。当您需要检查依赖安全性、更新过时包或确保许可证兼容时,可使用"check dependencies"等触发短语来调用。

查看技能

work-execution-principles

其他

这个Claude Skill为开发者提供了一套通用的工作执行原则,涵盖任务分解、范围确定、测试策略和依赖管理。它确保开发活动中的一致质量标准,适用于代码审查、工作规划和架构决策等场景。该技能与所有编程语言和框架兼容,帮助开发者系统化地组织代码结构和定义工作边界。

查看技能

Git Commit Helper

Git Commit Helper能通过分析git diff自动生成规范的提交信息,适用于开发者编写提交消息或审查暂存区变更时。它能识别代码变更类型并自动匹配Conventional Commits规范,提供包含功能类型、作用域和描述的标准化消息。开发者只需提供git diff内容即可获得即用型的提交消息建议。

查看技能

nextjs

开发

This Next.js Skill provides architectural standards and BFF patterns for Next.js 15.5+ projects using App Router. It enforces clear server/client component separation, implements Server Actions and Route Handlers, and ensures performance optimization with SEO best practices. Use it when designing App Router structures, implementing data fetching strategies, or building BFF architectures.

查看技能