llama-factory
关于
This skill provides expert guidance for fine-tuning LLMs using LLaMA-Factory, a framework featuring a no-code WebUI and support for 100+ models. It offers comprehensive assistance for implementing solutions, debugging code, and learning best practices when working with LLaMA-Factory's capabilities like multi-bit QLoRA and multimodal support. Use this skill when developing, debugging, or asking about LLaMA-Factory features and APIs.
技能文档
Llama-Factory Skill
Comprehensive assistance with llama-factory development, generated from official documentation.
When to Use This Skill
This skill should be triggered when:
- Working with llama-factory
- Asking about llama-factory features or APIs
- Implementing llama-factory solutions
- Debugging llama-factory code
- Learning llama-factory best practices
Quick Reference
Common Patterns
Quick reference patterns will be added as you use the skill.
Reference Files
This skill includes comprehensive documentation in references/:
- _images.md - Images documentation
- advanced.md - Advanced documentation
- getting_started.md - Getting Started documentation
- other.md - Other documentation
Use view to read specific reference files when detailed information is needed.
Working with This Skill
For Beginners
Start with the getting_started or tutorials reference files for foundational concepts.
For Specific Features
Use the appropriate category reference file (api, guides, etc.) for detailed information.
For Code Examples
The quick reference section above contains common patterns extracted from the official docs.
Resources
references/
Organized documentation extracted from official sources. These files contain:
- Detailed explanations
- Code examples with language annotations
- Links to original documentation
- Table of contents for quick navigation
scripts/
Add helper scripts here for common automation tasks.
assets/
Add templates, boilerplate, or example projects here.
Notes
- This skill was automatically generated from official documentation
- Reference files preserve the structure and examples from source docs
- Code examples include language detection for better syntax highlighting
- Quick reference patterns are extracted from common usage examples in the docs
Updating
To refresh this skill with updated documentation:
- Re-run the scraper with the same configuration
- The skill will be rebuilt with the latest information
快速安装
/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs/tree/main/llama-factory在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
when-optimizing-prompts-use-prompt-architect
其他该Skill为开发者提供基于证据的提示词分析与优化框架,帮助解决AI响应质量差、输出不一致等问题。它能识别并消除提示词中的反模式,通过A/B测试验证优化效果。适用于需要创建新提示、重构现有提示或提升AI系统响应质量的开发场景。
receiving-code-review
设计该Skill帮助开发者在收到代码审查反馈后,先进行技术验证再实施修改,尤其适用于反馈不明确或存在技术疑问的场景。它强调通过“理解-验证-评估-回应”的严谨流程,避免盲目同意或机械执行。核心要求是保持技术严谨性,优先追求代码正确性而非社交融洽。
requesting-code-review
设计该Skill可在完成任务、实现主要功能或合并代码前自动调度代码审查子代理,确保实现符合需求和计划。它支持通过指定git SHA范围进行精准的代码变更审查,帮助开发者在关键节点及时发现潜在问题。核心原则是"早审查、勤审查",适用于开发流程的各个关键阶段。
executing-plans
设计该Skill用于当开发者提供完整实施计划时,以受控批次方式执行代码实现。它会先审阅计划并提出疑问,然后分批次执行任务(默认每批3个任务),并在批次间暂停等待审查。关键特性包括分批次执行、内置检查点和架构师审查机制,确保复杂系统实现的可控性。
