MCP HubMCP Hub
返回技能列表

shift-right-testing

proffesor-for-testing
更新于 Today
130 次查看
99
21
99
在 GitHub 上查看
其他shift-rightproduction-testingcanaryfeature-flagschaos-engineeringmonitoring

关于

This skill enables testing in production using feature flags, canary deployments, and chaos engineering. It's designed for implementing production observability and progressive delivery strategies. Key capabilities include progressive rollouts, synthetic monitoring, and failure injection to build system resilience.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/proffesor-for-testing/agentic-qe
Git 克隆备选方式
git clone https://github.com/proffesor-for-testing/agentic-qe.git ~/.claude/skills/shift-right-testing

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Shift-Right Testing

<default_to_action> When testing in production or implementing progressive delivery:

  1. IMPLEMENT feature flags for progressive rollout (1% → 10% → 50% → 100%)
  2. DEPLOY with canary releases (compare metrics before full rollout)
  3. MONITOR with synthetic tests (proactive) + RUM (reactive)
  4. INJECT failures with chaos engineering (build resilience)
  5. ANALYZE production data to improve pre-production testing

Quick Shift-Right Techniques:

  • Feature flags → Control who sees what, instant rollback
  • Canary deployment → 5% traffic, compare error rates
  • Synthetic monitoring → Simulate users 24/7, catch issues before users
  • Chaos engineering → Netflix-style failure injection
  • RUM (Real User Monitoring) → Actual user experience data

Critical Success Factors:

  • Production is the ultimate test environment
  • Ship fast with safety nets, not slow with certainty
  • Use production data to improve shift-left testing </default_to_action>

Quick Reference Card

When to Use

  • Progressive feature rollouts
  • Production reliability validation
  • Performance monitoring at scale
  • Learning from real user behavior

Shift-Right Techniques

TechniquePurposeWhen
Feature FlagsControlled rolloutEvery feature
CanaryCompare new vs oldEvery deployment
Synthetic MonitoringProactive detection24/7
RUMReal user metricsAlways on
Chaos EngineeringResilience validationRegularly
A/B TestingUser behavior validationFeature decisions

Progressive Rollout Pattern

1% → 10% → 25% → 50% → 100%
↓      ↓      ↓      ↓
Check  Check  Check  Monitor

Key Metrics to Monitor

MetricSLO TargetAlert Threshold
Error rate< 0.1%> 1%
p95 latency< 200ms> 500ms
Availability99.9%< 99.5%
Apdex> 0.95< 0.8

Feature Flags

// Progressive rollout with LaunchDarkly/Unleash pattern
const newCheckout = featureFlags.isEnabled('new-checkout', {
  userId: user.id,
  percentage: 10,  // 10% of users
  allowlist: ['beta-testers']
});

if (newCheckout) {
  return <NewCheckoutFlow />;
} else {
  return <LegacyCheckoutFlow />;
}

// Instant rollback on issues
await featureFlags.disable('new-checkout');

Canary Deployment

# Flagger canary config
apiVersion: flagger.app/v1beta1
kind: Canary
spec:
  targetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: checkout-service
  progressDeadlineSeconds: 60
  analysis:
    interval: 1m
    threshold: 5      # Max failed checks
    maxWeight: 50     # Max traffic to canary
    stepWeight: 10    # Increment per interval
    metrics:
      - name: request-success-rate
        threshold: 99
      - name: request-duration
        threshold: 500

Synthetic Monitoring

// Continuous production validation
await Task("Synthetic Tests", {
  endpoints: [
    { path: '/health', expected: 200, interval: '30s' },
    { path: '/api/products', expected: 200, interval: '1m' },
    { path: '/checkout', flow: 'full-purchase', interval: '5m' }
  ],
  locations: ['us-east', 'eu-west', 'ap-south'],
  alertOn: {
    statusCode: '!= 200',
    latency: '> 500ms',
    contentMismatch: true
  }
}, "qe-production-intelligence");

Chaos Engineering

// Controlled failure injection
await Task("Chaos Experiment", {
  hypothesis: 'System handles database latency gracefully',
  steadyState: {
    metric: 'error_rate',
    expected: '< 0.1%'
  },
  experiment: {
    type: 'network-latency',
    target: 'database',
    delay: '500ms',
    duration: '5m'
  },
  rollback: {
    automatic: true,
    trigger: 'error_rate > 5%'
  }
}, "qe-chaos-engineer");

Production → Pre-Production Feedback Loop

// Convert production incidents to regression tests
await Task("Incident Replay", {
  incident: {
    id: 'INC-2024-001',
    type: 'performance-degradation',
    conditions: { concurrent_users: 500, cart_items: 10 }
  },
  generateTests: true,
  addToRegression: true
}, "qe-production-intelligence");

// Output: New test added to prevent recurrence

Agent Coordination Hints

Memory Namespace

aqe/shift-right/
├── canary-results/*      - Canary deployment metrics
├── synthetic-tests/*     - Monitoring configurations
├── chaos-experiments/*   - Experiment results
├── production-insights/* - Issues → test conversions
└── rum-analysis/*        - Real user data patterns

Fleet Coordination

const shiftRightFleet = await FleetManager.coordinate({
  strategy: 'shift-right-testing',
  agents: [
    'qe-production-intelligence',  // RUM, incident replay
    'qe-chaos-engineer',           // Resilience testing
    'qe-performance-tester',       // Synthetic monitoring
    'qe-quality-analyzer'          // Metrics analysis
  ],
  topology: 'mesh'
});

Related Skills


Remember

Production is the ultimate test environment. Feature flags enable instant rollback. Canary catches issues before 100% rollout. Synthetic monitoring detects problems before users. Chaos engineering builds resilience. RUM shows real user experience.

With Agents: Agents monitor production, replay incidents as tests, run chaos experiments, and convert production insights to pre-production tests. Use agents to maintain continuous production quality.

GitHub 仓库

proffesor-for-testing/agentic-qe
路径: .claude/skills/shift-right-testing
agenticqeagenticsfoundationagentsquality-engineering

相关推荐技能

cicd-pipeline-qe-orchestrator

其他

该Skill用于在CI/CD流水线各阶段协调质量工程活动,特别适用于设计测试策略、规划质量门禁或实施左移/右移测试。它能自动分析流水线阶段,选择最佳测试代理并配置可度量的质量阈值。关键特性包括并行代理协调、多阶段覆盖以及与现有质量工程工具的集成。

查看技能

test-automation-strategy

其他

该Skill为开发者提供完整的测试自动化策略指导,涵盖测试金字塔设计、FIRST原则应用和CI/CD集成。它适用于构建新自动化框架或优化现有测试效率的场景,内置页面对象模式等最佳实践模板。通过结构化方法帮助团队建立可靠、可维护且与开发流程深度集成的自动化测试体系。

查看技能

testability-scoring

其他

该Skill基于10个内在可测试性原则,对Web应用进行AI驱动的可测试性评估。它使用Playwright并可选集成Vibium,帮助开发者评估测试就绪度、识别改进点并生成报告。适用于软件可测试性评估、测试准备度检查及生成可测试性改进建议等场景。

查看技能

risk-based-testing

其他

该Skill通过风险评估和优先级排序,帮助开发者将测试资源集中在最高风险区域。它适用于制定测试策略、分配测试资源或做出覆盖决策的关键场景。核心能力包括风险识别与量化计算、基于风险级别的自动化测试分配,以及持续的风险再评估机制。

查看技能