requesting-code-review
关于
This skill dispatches a code-reviewer subagent to analyze code changes against requirements before proceeding. It should be used after completing tasks, implementing major features, or before merging to main. The review helps catch issues early by comparing the current implementation with the original plan.
技能文档
Requesting Code Review
Dispatch superpowers:code-reviewer subagent to catch issues before they cascade.
Core principle: Review early, review often.
When to Request Review
Mandatory:
- After each task in subagent-driven development
- After completing major feature
- Before merge to main
Optional but valuable:
- When stuck (fresh perspective)
- Before refactoring (baseline check)
- After fixing complex bug
How to Request
1. Get git SHAs:
BASE_SHA=$(git rev-parse HEAD~1) # or origin/main
HEAD_SHA=$(git rev-parse HEAD)
2. Dispatch code-reviewer subagent:
Use Task tool with superpowers:code-reviewer type, fill template at code-reviewer.md
Placeholders:
{WHAT_WAS_IMPLEMENTED}- What you just built{PLAN_OR_REQUIREMENTS}- What it should do{BASE_SHA}- Starting commit{HEAD_SHA}- Ending commit{DESCRIPTION}- Brief summary
3. Act on feedback:
- Fix Critical issues immediately
- Fix Important issues before proceeding
- Note Minor issues for later
- Push back if reviewer is wrong (with reasoning)
Example
[Just completed Task 2: Add verification function]
You: Let me request code review before proceeding.
BASE_SHA=$(git log --oneline | grep "Task 1" | head -1 | awk '{print $1}')
HEAD_SHA=$(git rev-parse HEAD)
[Dispatch superpowers:code-reviewer subagent]
WHAT_WAS_IMPLEMENTED: Verification and repair functions for conversation index
PLAN_OR_REQUIREMENTS: Task 2 from docs/plans/deployment-plan.md
BASE_SHA: a7981ec
HEAD_SHA: 3df7661
DESCRIPTION: Added verifyIndex() and repairIndex() with 4 issue types
[Subagent returns]:
Strengths: Clean architecture, real tests
Issues:
Important: Missing progress indicators
Minor: Magic number (100) for reporting interval
Assessment: Ready to proceed
You: [Fix progress indicators]
[Continue to Task 3]
Integration with Workflows
Subagent-Driven Development:
- Review after EACH task
- Catch issues before they compound
- Fix before moving to next task
Executing Plans:
- Review after each batch (3 tasks)
- Get feedback, apply, continue
Ad-Hoc Development:
- Review before merge
- Review when stuck
Red Flags
Never:
- Skip review because "it's simple"
- Ignore Critical issues
- Proceed with unfixed Important issues
- Argue with valid technical feedback
If reviewer wrong:
- Push back with technical reasoning
- Show code/tests that prove it works
- Request clarification
See template at: requesting-code-review/code-reviewer.md
快速安装
/plugin add https://github.com/lifangda/claude-plugins/tree/main/requesting-code-review在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
