MCP HubMCP Hub
返回技能列表

Remembering Conversations

lifangda
更新于 Today
52 次查看
11
11
在 GitHub 上查看
开发ai

关于

This skill enables semantic and text-based search through previous Claude Code conversations to retrieve facts, patterns, and decisions. Developers should use it when a partner references past discussions or when debugging familiar issues to avoid reinventing solutions. It operates on a "search before reinventing" principle and requires using subagents for efficient context management.

技能文档

Remembering Conversations

Search archived conversations using semantic similarity or exact text matching.

Core principle: Search before reinventing.

Announce: "I'm searching previous conversations for [topic]."

Setup: See INDEXING.md

When to Use

Search when:

  • Your human partner mentions "we discussed this before"
  • Debugging similar issues
  • Looking for architectural decisions or patterns
  • Before implementing something familiar

Don't search when:

  • Info in current conversation
  • Question about current codebase (use Grep/Read)

In-Session Use

Always use subagents (50-100x context savings). See skills/using-skills for workflow.

Manual/CLI use: Direct search (below) for humans outside Claude Code sessions.

Direct Search (Manual/CLI)

Tool: ${SUPERPOWERS_SKILLS_ROOT}/skills/collaboration/remembering-conversations/tool/search-conversations

Modes:

search-conversations "query"              # Vector similarity (default)
search-conversations --text "exact"       # Exact string match
search-conversations --both "query"       # Both modes

Flags:

--after YYYY-MM-DD    # Filter by date
--before YYYY-MM-DD   # Filter by date
--limit N             # Max results (default: 10)
--help                # Full usage

Examples:

# Semantic search
search-conversations "React Router authentication errors"

# Find git SHA
search-conversations --text "a1b2c3d4"

# Time range
search-conversations --after 2025-09-01 "refactoring"

Returns: project, date, conversation summary, matched exchange, similarity %, file path.

For details: Run search-conversations --help

快速安装

/plugin add https://github.com/lifangda/claude-plugins/tree/main/remembering-conversations

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

lifangda/claude-plugins
路径: cli-tool/skills-library/collaboration/remembering-conversations

相关推荐技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能