MCP HubMCP Hub
返回技能列表

csv-data-summarizer

lifangda
更新于 Today
474 次查看
11
11
在 GitHub 上查看
designdata

关于

This skill automatically analyzes CSV files to generate comprehensive statistical summaries and visualizations using Python's pandas and matplotlib/seaborn. It should be triggered whenever a user uploads or references CSV data without prompting for analysis preferences. The tool provides immediate insights into data structure, quality, and patterns through automated analysis and visualization.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/lifangda/claude-plugins
Git 克隆备选方式
git clone https://github.com/lifangda/claude-plugins.git ~/.claude/skills/csv-data-summarizer

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

CSV Data Summarizer

This Skill analyzes CSV files and provides comprehensive summaries with statistical insights and visualizations.

When to Use This Skill

Claude should use this Skill whenever the user:

  • Uploads or references a CSV file
  • Asks to summarize, analyze, or visualize tabular data
  • Requests insights from CSV data
  • Wants to understand data structure and quality

How It Works

⚠️ CRITICAL BEHAVIOR REQUIREMENT ⚠️

DO NOT ASK THE USER WHAT THEY WANT TO DO WITH THE DATA. DO NOT OFFER OPTIONS OR CHOICES. DO NOT SAY "What would you like me to help you with?" DO NOT LIST POSSIBLE ANALYSES.

IMMEDIATELY AND AUTOMATICALLY:

  1. Run the comprehensive analysis
  2. Generate ALL relevant visualizations
  3. Present complete results
  4. NO questions, NO options, NO waiting for user input

THE USER WANTS A FULL ANALYSIS RIGHT AWAY - JUST DO IT.

Automatic Analysis Steps:

The skill intelligently adapts to different data types and industries by inspecting the data first, then determining what analyses are most relevant.

  1. Load and inspect the CSV file into pandas DataFrame

  2. Identify data structure - column types, date columns, numeric columns, categories

  3. Determine relevant analyses based on what's actually in the data:

    • Sales/E-commerce data (order dates, revenue, products): Time-series trends, revenue analysis, product performance
    • Customer data (demographics, segments, regions): Distribution analysis, segmentation, geographic patterns
    • Financial data (transactions, amounts, dates): Trend analysis, statistical summaries, correlations
    • Operational data (timestamps, metrics, status): Time-series, performance metrics, distributions
    • Survey data (categorical responses, ratings): Frequency analysis, cross-tabulations, distributions
    • Generic tabular data: Adapts based on column types found
  4. Only create visualizations that make sense for the specific dataset:

    • Time-series plots ONLY if date/timestamp columns exist
    • Correlation heatmaps ONLY if multiple numeric columns exist
    • Category distributions ONLY if categorical columns exist
    • Histograms for numeric distributions when relevant
  5. Generate comprehensive output automatically including:

    • Data overview (rows, columns, types)
    • Key statistics and metrics relevant to the data type
    • Missing data analysis
    • Multiple relevant visualizations (only those that apply)
    • Actionable insights based on patterns found in THIS specific dataset
  6. Present everything in one complete analysis - no follow-up questions

Example adaptations:

  • Healthcare data with patient IDs → Focus on demographics, treatment patterns, temporal trends
  • Inventory data with stock levels → Focus on quantity distributions, reorder patterns, SKU analysis
  • Web analytics with timestamps → Focus on traffic patterns, conversion metrics, time-of-day analysis
  • Survey responses → Focus on response distributions, demographic breakdowns, sentiment patterns

Behavior Guidelines

CORRECT APPROACH - SAY THIS:

  • "I'll analyze this data comprehensively right now."
  • "Here's the complete analysis with visualizations:"
  • "I've identified this as [type] data and generated relevant insights:"
  • Then IMMEDIATELY show the full analysis

DO:

  • Immediately run the analysis script
  • Generate ALL relevant charts automatically
  • Provide complete insights without being asked
  • Be thorough and complete in first response
  • Act decisively without asking permission

NEVER SAY THESE PHRASES:

  • "What would you like to do with this data?"
  • "What would you like me to help you with?"
  • "Here are some common options:"
  • "Let me know what you'd like help with"
  • "I can create a comprehensive analysis if you'd like!"
  • Any sentence ending with "?" asking for user direction
  • Any list of options or choices
  • Any conditional "I can do X if you want"

FORBIDDEN BEHAVIORS:

  • Asking what the user wants
  • Listing options for the user to choose from
  • Waiting for user direction before analyzing
  • Providing partial analysis that requires follow-up
  • Describing what you COULD do instead of DOING it

Usage

The Skill provides a Python function summarize_csv(file_path) that:

  • Accepts a path to a CSV file
  • Returns a comprehensive text summary with statistics
  • Generates multiple visualizations automatically based on data structure

Example Prompts

"Here's sales_data.csv. Can you summarize this file?"

"Analyze this customer data CSV and show me trends."

"What insights can you find in orders.csv?"

Example Output

Dataset Overview

  • 5,000 rows × 8 columns
  • 3 numeric columns, 1 date column

Summary Statistics

  • Average order value: $58.2
  • Standard deviation: $12.4
  • Missing values: 2% (100 cells)

Insights

  • Sales show upward trend over time
  • Peak activity in Q4 (Attached: trend plot)

Files

  • analyze.py - Core analysis logic
  • requirements.txt - Python dependencies
  • resources/sample.csv - Example dataset for testing
  • resources/README.md - Additional documentation

Notes

  • Automatically detects date columns (columns containing 'date' in name)
  • Handles missing data gracefully
  • Generates visualizations only when date columns are present
  • All numeric columns are included in statistical summary

GitHub 仓库

lifangda/claude-plugins
路径: cli-tool/skills-library/data-analysis/csv-summarizer

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能

Algorithmic Art Generation

这个Claude Skill帮助开发者使用p5.js创建算法艺术,特别适用于生成式艺术和交互式可视化项目。它支持种子随机性、流场和粒子系统等关键技术,确保艺术作品的重复性和独特性。当讨论生成艺术、算法艺术或计算美学时,该技能会自动激活,指导开发者完成从概念设计到技术实现的全过程。

查看技能