error-tracking
About
This skill implements Sentry error tracking for automatic exception monitoring and performance issue detection. It's designed for production environments to capture bugs, track releases, and analyze application stability. Developers can use it when setting up comprehensive error monitoring systems.
Documentation
Error Tracking
Overview
Set up comprehensive error tracking with Sentry to automatically capture, report, and analyze exceptions, performance issues, and application stability.
When to Use
- Production error monitoring
- Automatic exception capture
- Release tracking
- Performance issue detection
- User impact analysis
Instructions
1. Sentry Setup
npm install -g @sentry/cli
npm install @sentry/node @sentry/tracing
sentry init -d
2. Node.js Sentry Integration
// sentry.js
const Sentry = require("@sentry/node");
const Tracing = require("@sentry/tracing");
Sentry.init({
dsn: process.env.SENTRY_DSN,
environment: process.env.NODE_ENV || 'development',
tracesSampleRate: process.env.NODE_ENV === 'production' ? 0.1 : 1.0,
release: process.env.APP_VERSION || '1.0.0',
integrations: [
new Sentry.Integrations.Http({ tracing: true }),
new Tracing.Integrations.Express({
app: true,
request: true,
transaction: true
})
],
ignoreErrors: [
'Network request failed',
'TimeoutError'
]
});
module.exports = Sentry;
3. Express Middleware Integration
// app.js
const express = require('express');
const Sentry = require('./sentry');
const app = express();
app.use(Sentry.Handlers.requestHandler());
app.use(Sentry.Handlers.tracingHandler());
app.get('/api/users/:id', (req, res) => {
const transaction = Sentry.startTransaction({
name: 'get_user',
op: 'http.server'
});
try {
const userId = req.params.id;
Sentry.captureMessage('Fetching user', {
level: 'info',
tags: { userId: userId }
});
const user = db.query(`SELECT * FROM users WHERE id = ${userId}`);
if (!user) {
Sentry.captureException(new Error('User not found'), {
level: 'warning',
contexts: { request: { userId } }
});
return res.status(404).json({ error: 'User not found' });
}
transaction.setTag('user.id', user.id);
res.json(user);
} catch (error) {
Sentry.captureException(error, {
level: 'error',
tags: { endpoint: 'get_user', userId: req.params.id }
});
res.status(500).json({ error: 'Internal server error' });
} finally {
transaction.finish();
}
});
app.use(Sentry.Handlers.errorHandler());
app.listen(3000);
4. Python Sentry Integration
# sentry_config.py
import sentry_sdk
from sentry_sdk.integrations.flask import FlaskIntegration
from sentry_sdk.integrations.logging import LoggingIntegration
import logging
import os
sentry_logging = LoggingIntegration(
level=logging.INFO,
event_level=logging.ERROR
)
sentry_sdk.init(
dsn=os.environ.get('SENTRY_DSN'),
integrations=[FlaskIntegration(), sentry_logging],
environment=os.environ.get('ENVIRONMENT', 'development'),
release=os.environ.get('APP_VERSION', '1.0.0'),
traces_sample_rate=0.1 if os.environ.get('ENVIRONMENT') == 'production' else 1.0,
attach_stacktrace=True
)
# Flask integration
from flask import Flask
import sentry_sdk
app = Flask(__name__)
@app.route('/api/orders/<order_id>')
def get_order(order_id):
try:
sentry_sdk.set_user({'id': request.user.id})
sentry_sdk.capture_message(f'Fetching order {order_id}', level='info')
order = db.query(f'SELECT * FROM orders WHERE id = {order_id}')
if not order:
sentry_sdk.capture_exception(ValueError('Order not found'))
return {'error': 'Order not found'}, 404
return {'order': order}
except Exception as e:
sentry_sdk.capture_exception(e, {
'tags': { 'endpoint': 'get_order', 'order_id': order_id }
})
return {'error': 'Internal server error'}, 500
5. Source Maps and Release Management
// webpack.config.js
const SentryCliPlugin = require('@sentry/webpack-plugin');
module.exports = {
plugins: [
new SentryCliPlugin({
include: './dist',
urlPrefix: 'https://example.com/',
release: process.env.APP_VERSION || '1.0.0',
org: process.env.SENTRY_ORG,
project: process.env.SENTRY_PROJECT,
authToken: process.env.SENTRY_AUTH_TOKEN
})
]
};
6. CI/CD Release Creation
#!/bin/bash
VERSION=$(cat package.json | grep version | head -1 | awk -F: '{ print $2 }' | sed 's/[",]//g')
# Create release
sentry-cli releases -o my-org -p my-project create $VERSION
# Upload source maps
sentry-cli releases -o my-org -p my-project files $VERSION upload-sourcemaps ./dist
# Finalize release
sentry-cli releases -o my-org -p my-project finalize $VERSION
# Deploy
sentry-cli releases -o my-org -p my-project deploys $VERSION new -e production
7. Custom Error Context
// custom-error-context.js
const Sentry = require('@sentry/node');
Sentry.configureScope(scope => {
scope.setUser({
id: userId,
email: userEmail,
subscription: 'pro'
});
scope.setTag('feature_flag', 'new-ui');
scope.setTag('database', 'postgres-v12');
scope.setContext('character', {
name: 'Mighty Fighter',
level: 19
});
scope.addBreadcrumb({
category: 'ui.click',
message: 'User clicked signup button',
level: 'info'
});
scope.addBreadcrumb({
category: 'database',
message: 'Query executed',
level: 'debug',
data: {
query: 'SELECT * FROM users',
duration: 125
}
});
});
// Before sending
Sentry.init({
dsn: process.env.SENTRY_DSN,
beforeSend(event, hint) {
if (event.request) {
delete event.request.cookies;
delete event.request.headers['authorization'];
}
return event;
}
});
8. Performance Monitoring
// performance.js
const Sentry = require('@sentry/node');
const transaction = Sentry.startTransaction({
name: 'process_order',
op: 'task',
data: { orderId: '12345' }
});
const dbSpan = transaction.startChild({
op: 'db',
description: 'Save order to database'
});
saveOrderToDb(order);
dbSpan.finish();
const paymentSpan = transaction.startChild({
op: 'http.client',
description: 'Process payment'
});
processPayment(order);
paymentSpan.finish();
transaction.setStatus('ok');
transaction.finish();
Best Practices
✅ DO
- Set up source maps for production
- Configure appropriate sample rates
- Track releases and deployments
- Filter sensitive information
- Add meaningful context to errors
- Use breadcrumbs for debugging
- Set user information
- Review error patterns regularly
❌ DON'T
- Send 100% of errors in production
- Include passwords in context
- Ignore configuration for environment
- Skip source map uploads
- Log personally identifiable information
- Use without proper filtering
- Disable tracking in production
Key Commands
sentry-cli releases create $VERSION
sentry-cli releases files upload-sourcemaps $VERSION ./dist
sentry-cli releases deploys $VERSION new -e production
sentry-cli releases finalize $VERSION
sentry-cli releases info $VERSION
Quick Install
/plugin add https://github.com/aj-geddes/useful-ai-prompts/tree/main/error-trackingCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
Algorithmic Art Generation
MetaThis skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.
business-rule-documentation
MetaThis skill provides standardized templates for systematically documenting business logic and domain knowledge following Domain-Driven Design principles. It helps developers capture business rules, process flows, decision trees, and terminology glossaries to maintain consistency between requirements and implementation. Use it when documenting domain models, creating business rule repositories, or bridging communication between business and technical teams.
huggingface-accelerate
DevelopmentHuggingFace Accelerate provides the simplest API for adding distributed training to PyTorch scripts with just 4 lines of code. It offers a unified interface for multiple distributed training frameworks like DeepSpeed, FSDP, and DDP while handling automatic device placement and mixed precision. This makes it ideal for developers who want to quickly scale their PyTorch training across multiple GPUs or nodes without complex configuration.
