huggingface-accelerate
About
HuggingFace Accelerate provides the simplest API for adding distributed training to PyTorch scripts with just 4 lines of code. It offers a unified interface for multiple distributed training frameworks like DeepSpeed, FSDP, and DDP while handling automatic device placement and mixed precision. This makes it ideal for developers who want to quickly scale their PyTorch training across multiple GPUs or nodes without complex configuration.
Documentation
HuggingFace Accelerate - Unified Distributed Training
Quick start
Accelerate simplifies distributed training to 4 lines of code.
Installation:
pip install accelerate
Convert PyTorch script (4 lines):
import torch
+ from accelerate import Accelerator
+ accelerator = Accelerator()
model = torch.nn.Transformer()
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset)
+ model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
for batch in dataloader:
optimizer.zero_grad()
loss = model(batch)
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
Run (single command):
accelerate launch train.py
Common workflows
Workflow 1: From single GPU to multi-GPU
Original script:
# train.py
import torch
model = torch.nn.Linear(10, 2).to('cuda')
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)
for epoch in range(10):
for batch in dataloader:
batch = batch.to('cuda')
optimizer.zero_grad()
loss = model(batch).mean()
loss.backward()
optimizer.step()
With Accelerate (4 lines added):
# train.py
import torch
from accelerate import Accelerator # +1
accelerator = Accelerator() # +2
model = torch.nn.Linear(10, 2)
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader) # +3
for epoch in range(10):
for batch in dataloader:
# No .to('cuda') needed - automatic!
optimizer.zero_grad()
loss = model(batch).mean()
accelerator.backward(loss) # +4
optimizer.step()
Configure (interactive):
accelerate config
Questions:
- Which machine? (single/multi GPU/TPU/CPU)
- How many machines? (1)
- Mixed precision? (no/fp16/bf16/fp8)
- DeepSpeed? (no/yes)
Launch (works on any setup):
# Single GPU
accelerate launch train.py
# Multi-GPU (8 GPUs)
accelerate launch --multi_gpu --num_processes 8 train.py
# Multi-node
accelerate launch --multi_gpu --num_processes 16 \
--num_machines 2 --machine_rank 0 \
--main_process_ip $MASTER_ADDR \
train.py
Workflow 2: Mixed precision training
Enable FP16/BF16:
from accelerate import Accelerator
# FP16 (with gradient scaling)
accelerator = Accelerator(mixed_precision='fp16')
# BF16 (no scaling, more stable)
accelerator = Accelerator(mixed_precision='bf16')
# FP8 (H100+)
accelerator = Accelerator(mixed_precision='fp8')
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
# Everything else is automatic!
for batch in dataloader:
with accelerator.autocast(): # Optional, done automatically
loss = model(batch)
accelerator.backward(loss)
Workflow 3: DeepSpeed ZeRO integration
Enable DeepSpeed ZeRO-2:
from accelerate import Accelerator
accelerator = Accelerator(
mixed_precision='bf16',
deepspeed_plugin={
"zero_stage": 2, # ZeRO-2
"offload_optimizer": False,
"gradient_accumulation_steps": 4
}
)
# Same code as before!
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
Or via config:
accelerate config
# Select: DeepSpeed → ZeRO-2
deepspeed_config.json:
{
"fp16": {"enabled": false},
"bf16": {"enabled": true},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {"device": "cpu"},
"allgather_bucket_size": 5e8,
"reduce_bucket_size": 5e8
}
}
Launch:
accelerate launch --config_file deepspeed_config.json train.py
Workflow 4: FSDP (Fully Sharded Data Parallel)
Enable FSDP:
from accelerate import Accelerator, FullyShardedDataParallelPlugin
fsdp_plugin = FullyShardedDataParallelPlugin(
sharding_strategy="FULL_SHARD", # ZeRO-3 equivalent
auto_wrap_policy="TRANSFORMER_AUTO_WRAP",
cpu_offload=False
)
accelerator = Accelerator(
mixed_precision='bf16',
fsdp_plugin=fsdp_plugin
)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
Or via config:
accelerate config
# Select: FSDP → Full Shard → No CPU Offload
Workflow 5: Gradient accumulation
Accumulate gradients:
from accelerate import Accelerator
accelerator = Accelerator(gradient_accumulation_steps=4)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
for batch in dataloader:
with accelerator.accumulate(model): # Handles accumulation
optimizer.zero_grad()
loss = model(batch)
accelerator.backward(loss)
optimizer.step()
Effective batch size: batch_size * num_gpus * gradient_accumulation_steps
When to use vs alternatives
Use Accelerate when:
- Want simplest distributed training
- Need single script for any hardware
- Use HuggingFace ecosystem
- Want flexibility (DDP/DeepSpeed/FSDP/Megatron)
- Need quick prototyping
Key advantages:
- 4 lines: Minimal code changes
- Unified API: Same code for DDP, DeepSpeed, FSDP, Megatron
- Automatic: Device placement, mixed precision, sharding
- Interactive config: No manual launcher setup
- Single launch: Works everywhere
Use alternatives instead:
- PyTorch Lightning: Need callbacks, high-level abstractions
- Ray Train: Multi-node orchestration, hyperparameter tuning
- DeepSpeed: Direct API control, advanced features
- Raw DDP: Maximum control, minimal abstraction
Common issues
Issue: Wrong device placement
Don't manually move to device:
# WRONG
batch = batch.to('cuda')
# CORRECT
# Accelerate handles it automatically after prepare()
Issue: Gradient accumulation not working
Use context manager:
# CORRECT
with accelerator.accumulate(model):
optimizer.zero_grad()
accelerator.backward(loss)
optimizer.step()
Issue: Checkpointing in distributed
Use accelerator methods:
# Save only on main process
if accelerator.is_main_process:
accelerator.save_state('checkpoint/')
# Load on all processes
accelerator.load_state('checkpoint/')
Issue: Different results with FSDP
Ensure same random seed:
from accelerate.utils import set_seed
set_seed(42)
Advanced topics
Megatron integration: See references/megatron-integration.md for tensor parallelism, pipeline parallelism, and sequence parallelism setup.
Custom plugins: See references/custom-plugins.md for creating custom distributed plugins and advanced configuration.
Performance tuning: See references/performance.md for profiling, memory optimization, and best practices.
Hardware requirements
- CPU: Works (slow)
- Single GPU: Works
- Multi-GPU: DDP (default), DeepSpeed, or FSDP
- Multi-node: DDP, DeepSpeed, FSDP, Megatron
- TPU: Supported
- Apple MPS: Supported
Launcher requirements:
- DDP:
torch.distributed.run(built-in) - DeepSpeed:
deepspeed(pip install deepspeed) - FSDP: PyTorch 1.12+ (built-in)
- Megatron: Custom setup
Resources
- Docs: https://huggingface.co/docs/accelerate
- GitHub: https://github.com/huggingface/accelerate
- Version: 1.11.0+
- Tutorial: "Accelerate your scripts"
- Examples: https://github.com/huggingface/accelerate/tree/main/examples
- Used by: HuggingFace Transformers, TRL, PEFT, all HF libraries
Quick Install
/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs/tree/main/accelerateCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
