Back to Skills

huggingface-accelerate

zechenzhangAGI
Updated Today
120 views
62
2
62
View on GitHub
Developmentaiapiautomation

About

HuggingFace Accelerate provides the simplest API for adding distributed training to PyTorch scripts with just 4 lines of code. It offers a unified interface for multiple distributed training frameworks like DeepSpeed, FSDP, and DDP while handling automatic device placement and mixed precision. This makes it ideal for developers who want to quickly scale their PyTorch training across multiple GPUs or nodes without complex configuration.

Documentation

HuggingFace Accelerate - Unified Distributed Training

Quick start

Accelerate simplifies distributed training to 4 lines of code.

Installation:

pip install accelerate

Convert PyTorch script (4 lines):

import torch
+ from accelerate import Accelerator

+ accelerator = Accelerator()

  model = torch.nn.Transformer()
  optimizer = torch.optim.Adam(model.parameters())
  dataloader = torch.utils.data.DataLoader(dataset)

+ model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

  for batch in dataloader:
      optimizer.zero_grad()
      loss = model(batch)
-     loss.backward()
+     accelerator.backward(loss)
      optimizer.step()

Run (single command):

accelerate launch train.py

Common workflows

Workflow 1: From single GPU to multi-GPU

Original script:

# train.py
import torch

model = torch.nn.Linear(10, 2).to('cuda')
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)

for epoch in range(10):
    for batch in dataloader:
        batch = batch.to('cuda')
        optimizer.zero_grad()
        loss = model(batch).mean()
        loss.backward()
        optimizer.step()

With Accelerate (4 lines added):

# train.py
import torch
from accelerate import Accelerator  # +1

accelerator = Accelerator()  # +2

model = torch.nn.Linear(10, 2)
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)  # +3

for epoch in range(10):
    for batch in dataloader:
        # No .to('cuda') needed - automatic!
        optimizer.zero_grad()
        loss = model(batch).mean()
        accelerator.backward(loss)  # +4
        optimizer.step()

Configure (interactive):

accelerate config

Questions:

  • Which machine? (single/multi GPU/TPU/CPU)
  • How many machines? (1)
  • Mixed precision? (no/fp16/bf16/fp8)
  • DeepSpeed? (no/yes)

Launch (works on any setup):

# Single GPU
accelerate launch train.py

# Multi-GPU (8 GPUs)
accelerate launch --multi_gpu --num_processes 8 train.py

# Multi-node
accelerate launch --multi_gpu --num_processes 16 \
  --num_machines 2 --machine_rank 0 \
  --main_process_ip $MASTER_ADDR \
  train.py

Workflow 2: Mixed precision training

Enable FP16/BF16:

from accelerate import Accelerator

# FP16 (with gradient scaling)
accelerator = Accelerator(mixed_precision='fp16')

# BF16 (no scaling, more stable)
accelerator = Accelerator(mixed_precision='bf16')

# FP8 (H100+)
accelerator = Accelerator(mixed_precision='fp8')

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

# Everything else is automatic!
for batch in dataloader:
    with accelerator.autocast():  # Optional, done automatically
        loss = model(batch)
    accelerator.backward(loss)

Workflow 3: DeepSpeed ZeRO integration

Enable DeepSpeed ZeRO-2:

from accelerate import Accelerator

accelerator = Accelerator(
    mixed_precision='bf16',
    deepspeed_plugin={
        "zero_stage": 2,  # ZeRO-2
        "offload_optimizer": False,
        "gradient_accumulation_steps": 4
    }
)

# Same code as before!
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

Or via config:

accelerate config
# Select: DeepSpeed → ZeRO-2

deepspeed_config.json:

{
    "fp16": {"enabled": false},
    "bf16": {"enabled": true},
    "zero_optimization": {
        "stage": 2,
        "offload_optimizer": {"device": "cpu"},
        "allgather_bucket_size": 5e8,
        "reduce_bucket_size": 5e8
    }
}

Launch:

accelerate launch --config_file deepspeed_config.json train.py

Workflow 4: FSDP (Fully Sharded Data Parallel)

Enable FSDP:

from accelerate import Accelerator, FullyShardedDataParallelPlugin

fsdp_plugin = FullyShardedDataParallelPlugin(
    sharding_strategy="FULL_SHARD",  # ZeRO-3 equivalent
    auto_wrap_policy="TRANSFORMER_AUTO_WRAP",
    cpu_offload=False
)

accelerator = Accelerator(
    mixed_precision='bf16',
    fsdp_plugin=fsdp_plugin
)

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

Or via config:

accelerate config
# Select: FSDP → Full Shard → No CPU Offload

Workflow 5: Gradient accumulation

Accumulate gradients:

from accelerate import Accelerator

accelerator = Accelerator(gradient_accumulation_steps=4)

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

for batch in dataloader:
    with accelerator.accumulate(model):  # Handles accumulation
        optimizer.zero_grad()
        loss = model(batch)
        accelerator.backward(loss)
        optimizer.step()

Effective batch size: batch_size * num_gpus * gradient_accumulation_steps

When to use vs alternatives

Use Accelerate when:

  • Want simplest distributed training
  • Need single script for any hardware
  • Use HuggingFace ecosystem
  • Want flexibility (DDP/DeepSpeed/FSDP/Megatron)
  • Need quick prototyping

Key advantages:

  • 4 lines: Minimal code changes
  • Unified API: Same code for DDP, DeepSpeed, FSDP, Megatron
  • Automatic: Device placement, mixed precision, sharding
  • Interactive config: No manual launcher setup
  • Single launch: Works everywhere

Use alternatives instead:

  • PyTorch Lightning: Need callbacks, high-level abstractions
  • Ray Train: Multi-node orchestration, hyperparameter tuning
  • DeepSpeed: Direct API control, advanced features
  • Raw DDP: Maximum control, minimal abstraction

Common issues

Issue: Wrong device placement

Don't manually move to device:

# WRONG
batch = batch.to('cuda')

# CORRECT
# Accelerate handles it automatically after prepare()

Issue: Gradient accumulation not working

Use context manager:

# CORRECT
with accelerator.accumulate(model):
    optimizer.zero_grad()
    accelerator.backward(loss)
    optimizer.step()

Issue: Checkpointing in distributed

Use accelerator methods:

# Save only on main process
if accelerator.is_main_process:
    accelerator.save_state('checkpoint/')

# Load on all processes
accelerator.load_state('checkpoint/')

Issue: Different results with FSDP

Ensure same random seed:

from accelerate.utils import set_seed
set_seed(42)

Advanced topics

Megatron integration: See references/megatron-integration.md for tensor parallelism, pipeline parallelism, and sequence parallelism setup.

Custom plugins: See references/custom-plugins.md for creating custom distributed plugins and advanced configuration.

Performance tuning: See references/performance.md for profiling, memory optimization, and best practices.

Hardware requirements

  • CPU: Works (slow)
  • Single GPU: Works
  • Multi-GPU: DDP (default), DeepSpeed, or FSDP
  • Multi-node: DDP, DeepSpeed, FSDP, Megatron
  • TPU: Supported
  • Apple MPS: Supported

Launcher requirements:

  • DDP: torch.distributed.run (built-in)
  • DeepSpeed: deepspeed (pip install deepspeed)
  • FSDP: PyTorch 1.12+ (built-in)
  • Megatron: Custom setup

Resources

Quick Install

/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs/tree/main/accelerate

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

zechenzhangAGI/AI-research-SKILLs
Path: 08-distributed-training/accelerate
aiai-researchclaudeclaude-codeclaude-skillscodex

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill