Back to Skills

moai-mcp-builder

modu-ai
Updated Yesterday
28 views
424
78
424
View on GitHub
Metaaimcpdesign

About

The moai-mcp-builder skill helps developers build enterprise-grade MCP servers using FastMCP 2.0 with production-ready tools, resources, and prompts. It's ideal for creating AI agent tools, implementing RAG systems, and developing protocol-based AI integrations. Key features include type-safe decorators, automatic OpenAPI generation, and enterprise authentication support.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/modu-ai/moai-adk
Git CloneAlternative
git clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-mcp-builder

Copy and paste this command in Claude Code to install this skill

Documentation

Enterprise MCP Server Builder & AI Integration Platform

MCP Protocol Capabilities

Model Context Protocol (MCP):

  • Standard protocol for LLM context provisioning
  • Tool provisioning (agent-callable functions)
  • Resource system (data/documents exposure)
  • Prompt templates (multi-turn patterns)
  • Transport abstraction (stdio, SSE, HTTP)

FastMCP 2.0 Framework:

  • Python-first MCP implementation
  • Type-safe decorators (@mcp.tool, @mcp.resource)
  • Automatic OpenAPI generation
  • Enterprise auth (OAuth, SAML)
  • Proxy and composition patterns
  • Production-ready deployments

Skill Metadata

FieldValue
Version4.0.0 Enterprise
Created2025-11-12
FrameworkFastMCP 2.0, Python SDK
ProtocolModel Context Protocol (MCP)
FeaturesTools, Resources, Prompts
TransportStdio, SSE, HTTP/WebSocket
AuthOAuth 2.0, SAML, API Keys
Tier4 (Enterprise)

MCP Architecture Overview

Three Core Components

1. Tools (Agent-Callable Functions):

@mcp.tool
def search_documents(query: str) -> list[dict]:
    """Search documents by query"""
    # Implementation
    return results

# Tools are exposed as callable actions
# Agents decide when/how to invoke
# Return typed structured data

2. Resources (Data/Document Exposure):

@mcp.resource
def get_document(doc_id: str) -> str:
    """Fetch document content"""
    # Read from database
    return content

# Resources provide context without execution
# Large documents efficiently streamed
# Agents request as needed

3. Prompts (Multi-Turn Patterns):

@mcp.prompt("analyze-code")
def code_analysis(language: str, code_snippet: str) -> str:
    """System prompt for code analysis"""
    return f"""You are a {language} expert...
    Analyze this code:
    {code_snippet}"""

# Pre-built system prompts
# Contextual parameters
# Multi-turn conversation patterns

Tool Design Principles

Agent-Centric Design

Principle 1: Build for Workflows, Not APIs

BAD:
@mcp.tool
def create_event(title: str) -> dict: ...
@mcp.tool
def check_availability(date: str) -> bool: ...

GOOD:
@mcp.tool
def schedule_event(
    title: str,
    date: str,
    check_conflicts: bool = True
) -> dict:
    """Single tool combining availability check + creation"""
    if check_conflicts and has_conflict(date):
        raise ValueError(f"Conflict on {date}")
    return create_event(title, date)

Principle 2: Optimize for Limited Context

BAD:
def list_all_users() -> list[dict]:
    """Returns 10,000 users with all fields"""
    return all_users_with_full_data()

GOOD:
def search_users(
    query: str,
    limit: int = 10,
    fields: list[str] = ["id", "name", "email"]
) -> list[dict]:
    """Search with pagination and field filtering"""
    return paginated_filtered_search(query, limit, fields)

Principle 3: Design Actionable Error Messages

BAD:
raise ValueError("Invalid date")

GOOD:
raise ValueError(
    f"Date must be in future. "
    f"Current date: {today}. "
    f"Try: {(today + timedelta(days=1)).isoformat()}"
)

Principle 4: Follow Natural Task Subdivisions

Tool Naming Conventions:
- create_*: Create new resources
- update_*: Modify existing resources
- delete_*: Remove resources
- list_*: Enumerate resources
- get_*: Fetch specific resource
- search_*: Find by criteria
- analyze_*: Generate insights

Type Safety & Documentation

Parameter Types:

from typing import Literal, Optional, Union
from pydantic import Field, validator

@mcp.tool
def process_data(
    data: dict,
    mode: Literal["fast", "thorough"] = "fast",
    timeout: Optional[int] = None,
    callbacks: list[str] = Field(default_factory=list),
) -> dict:
    """
    Process data with specified mode.
    
    Args:
        data: Input dictionary
        mode: Processing speed preference
        timeout: Optional timeout in seconds
        callbacks: List of webhook URLs
        
    Returns:
        Processed result dictionary
    """
    # Implementation with validation

FastMCP Server Implementation

Basic Server Structure

from fastmcp import FastMCP

server = FastMCP("my-server")

@server.tool()
def get_weather(city: str) -> str:
    """Get current weather for a city"""
    # Fetch from API
    return f"Weather in {city}: 72°F, sunny"

@server.resource("weather://{city}")
def weather_resource(city: str) -> str:
    """Get detailed weather data"""
    return f"""Weather Report for {city}
    Temperature: 72°F
    Humidity: 65%
    Wind: 10mph"""

@server.prompt("weather-analyst")
def weather_prompt() -> str:
    """System prompt for weather analysis"""
    return """You are a weather expert. Analyze the provided 
    weather data and give actionable recommendations."""

if __name__ == "__main__":
    server.run()

Authentication Layer

from fastmcp.auth import OAuth2Provider, APIKeyAuth

# OAuth2 Configuration
oauth = OAuth2Provider(
    authorize_url="https://auth.example.com/authorize",
    token_url="https://auth.example.com/token",
    scopes=["read:data", "write:data"]
)

@server.auth(oauth)
@server.tool()
def protected_tool(user_id: str) -> dict:
    """Tool requiring OAuth authentication"""
    return get_user_data(user_id)

# API Key Authentication
api_auth = APIKeyAuth(header="X-API-Key")

@server.auth(api_auth)
@server.resource("secure://{resource_id}")
def secure_resource(resource_id: str) -> str:
    """Resource with API key protection"""
    return fetch_secure_data(resource_id)

Real-World Patterns

Pattern 1: Database Query Tool

from sqlalchemy import create_engine, select
from sqlalchemy.orm import Session

engine = create_engine("postgresql://...")

@server.tool()
def query_database(
    table: Literal["users", "products", "orders"],
    filters: dict = None,
    limit: int = 10
) -> list[dict]:
    """
    Query database with filters and pagination.
    
    Examples:
    - table="users", filters={"status": "active"}
    - table="products", filters={"price_gt": 100}
    """
    with Session(engine) as session:
        query = get_query(table)
        if filters:
            query = apply_filters(query, filters)
        return [dict(row) for row in query.limit(limit)]

Pattern 2: API Integration Tool

import httpx
from datetime import datetime, timedelta

@server.tool()
def search_articles(
    query: str,
    source: Literal["hacker-news", "arxiv", "medium"] = "hacker-news",
    hours_back: int = 24
) -> list[dict]:
    """
    Search articles from multiple sources.
    
    Args:
        query: Search terms
        source: Publication source
        hours_back: Search time window
    """
    cutoff = datetime.now() - timedelta(hours=hours_back)
    
    clients = {
        "hacker-news": HNClient(),
        "arxiv": ArxivClient(),
        "medium": MediumClient(),
    }
    
    results = clients[source].search(query, since=cutoff)
    return sorted(results, key=lambda x: x["relevance"], reverse=True)[:10]

Pattern 3: File Processing Tool

from pathlib import Path
import json, yaml

@server.tool()
def process_config_file(
    file_path: str,
    format: Literal["json", "yaml", "toml"] = "json",
    validate: bool = True
) -> dict:
    """
    Load and validate configuration file.
    
    Args:
        file_path: Path to config file
        format: File format auto-detection
        validate: Validate against schema
    """
    path = Path(file_path)
    if not path.exists():
        raise FileNotFoundError(f"Config file not found: {file_path}")
    
    loaders = {
        "json": json.loads,
        "yaml": yaml.safe_load,
        "toml": tomli.loads,
    }
    
    content = path.read_text()
    config = loaders[format](content)
    
    if validate:
        validate_config_schema(config)
    
    return config

Pattern 4: LLM Integration Tool

from anthropic import Anthropic

client = Anthropic()

@server.tool()
def analyze_text(
    text: str,
    analysis_type: Literal["summary", "sentiment", "entities", "topics"],
    max_tokens: int = 1000
) -> str:
    """
    Analyze text using Claude API.
    
    Args:
        text: Input text to analyze
        analysis_type: Type of analysis
        max_tokens: Max response length
    """
    prompts = {
        "summary": f"Summarize: {text}",
        "sentiment": f"Analyze sentiment: {text}",
        "entities": f"Extract entities: {text}",
        "topics": f"Identify topics: {text}",
    }
    
    response = client.messages.create(
        model="claude-opus-4-1",
        max_tokens=max_tokens,
        messages=[{"role": "user", "content": prompts[analysis_type]}]
    )
    
    return response.content[0].text

Pattern 5: Proxy Server (Composing Multiple MCPs)

from fastmcp.proxy import ProxyServer

proxy = ProxyServer("multi-protocol-proxy")

# Mount multiple MCP servers
proxy.mount("/weather", weather_server)
proxy.mount("/database", database_server)
proxy.mount("/api", api_server)

@proxy.tool()
def unified_search(
    query: str,
    search_in: Literal["weather", "database", "api"] = "all"
) -> dict:
    """
    Search across mounted servers.
    """
    results = {}
    if search_in in ["all", "weather"]:
        results["weather"] = proxy.invoke("/weather/search", query)
    if search_in in ["all", "database"]:
        results["db"] = proxy.invoke("/database/search", query)
    if search_in in ["all", "api"]:
        results["api"] = proxy.invoke("/api/search", query)
    return results

if __name__ == "__main__":
    proxy.run()

Deployment Strategies

Local Development

# Install dependencies
pip install fastmcp[dev]

# Run in development mode
fastmcp dev my_server.py

# Test with cURL
curl -X POST http://localhost:8000/tool/search_documents \
  -H "Content-Type: application/json" \
  -d '{"query": "python"}'

Docker Deployment

FROM python:3.11-slim

WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt

COPY . .

EXPOSE 8000
CMD ["fastmcp", "run", "server.py", "--host", "0.0.0.0"]

Cloud Deployment

# deploy.yaml (Kubernetes)
apiVersion: apps/v1
kind: Deployment
metadata:
  name: mcp-server
spec:
  replicas: 3
  template:
    spec:
      containers:
      - name: mcp-server
        image: my-mcp-server:latest
        ports:
        - containerPort: 8000
        env:
        - name: DATABASE_URL
          valueFrom:
            secretKeyRef:
              name: db-secret
              key: url

Best Practices

Error Handling

from fastmcp.exceptions import MCPError

@server.tool()
def resilient_tool(resource_id: str) -> dict:
    """Tool with comprehensive error handling"""
    try:
        resource = fetch_resource(resource_id)
        if not resource:
            raise MCPError(
                f"Resource not found: {resource_id}. "
                f"Try: list_available_resources()"
            )
        return process_resource(resource)
    except DatabaseError as e:
        raise MCPError(f"Database error: {str(e)}", retry=True)
    except ValidationError as e:
        raise MCPError(f"Invalid input: {e.details}", retry=False)

Performance Optimization

from functools import lru_cache
import asyncio

@lru_cache(maxsize=128)
def expensive_computation(key: str) -> dict:
    """Cache results of expensive operations"""
    return fetch_and_process(key)

@server.tool()
async def batch_process(items: list[str]) -> list[dict]:
    """Use async for concurrent operations"""
    tasks = [process_item_async(item) for item in items]
    return await asyncio.gather(*tasks)

Monitoring & Logging

import logging
from fastmcp.monitoring import instrument

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@server.tool()
@instrument(track_duration=True, track_errors=True)
def monitored_tool(data: dict) -> dict:
    """Tool with automatic monitoring"""
    logger.info(f"Processing: {data}")
    result = process(data)
    logger.info(f"Result: {result}")
    return result

MCP Production Readiness Checklist:

  • All tools have type hints and docstrings
  • Error messages are actionable
  • Authentication configured (OAuth/API keys)
  • Logging and monitoring enabled
  • Rate limiting implemented
  • Unit tests >85% coverage
  • Integration tests for tool chains
  • Performance benchmarks <500ms p99
  • Documentation with examples
  • Deployment strategy defined

GitHub Repository

modu-ai/moai-adk
Path: .claude/skills/moai-mcp-builder
agentic-aiagentic-codingagentic-workflowclaudeclaudecodevibe-coding

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill