Convex Agents Human Agents
About
This skill enables human-in-the-loop workflows by integrating human agents alongside AI agents in automated processes. It's designed for scenarios requiring human judgment like escalations, approval workflows, or providing contextual knowledge that AI cannot determine. Developers can use it to create hybrid systems where humans and AI collaborate within the same agent threads.
Documentation
Purpose
Human agents allow humans to participate in agent threads, creating hybrid workflows where humans and AI collaborate. Perfect for support, approval workflows, and escalations.
When to Use This Skill
- Customer support with escalation to humans
- Approval workflows where humans verify AI decisions
- Human-AI collaboration (e.g., brainstorming)
- Workflows needing human context or judgment
- Handling exceptions AI can't resolve
- Collecting human feedback for continuous improvement
How to Use It
1. Save a User Message
Store a message from the end user:
// convex/humanAgents.ts
import { mutation } from "./_generated/server";
import { v } from "convex/values";
import { saveMessage } from "@convex-dev/agent";
import { components } from "./_generated/api";
export const saveUserMessage = mutation({
args: { threadId: v.string(), message: v.string() },
handler: async (ctx, { threadId, message }) => {
const { messageId } = await saveMessage(ctx, components.agent, {
threadId,
prompt: message, // User message without agent generation
});
return { messageId };
},
});
2. Save Human Agent Response
Store a message from a human (e.g., support agent):
// convex/humanAgents.ts
import { mutation } from "./_generated/server";
import { v } from "convex/values";
import { saveMessage } from "./_generated/api";
import { components } from "./_generated/api";
export const saveHumanResponse = mutation({
args: {
threadId: v.string(),
humanName: v.string(),
response: v.string(),
},
handler: async (ctx, { threadId, humanName, response }) => {
const { messageId } = await saveMessage(ctx, components.agent, {
threadId,
agentName: humanName, // Human's name as the "agent"
message: {
role: "assistant",
content: response,
},
metadata: {
provider: "human",
providerMetadata: {
human: { name: humanName },
},
},
});
return { messageId };
},
});
3. Decide Who Responds Next
Route to AI or human:
// convex/humanAgents.ts
import { action } from "./_generated/server";
import { v } from "convex/values";
import { myAgent } from "./agents/myAgent";
export const routeResponse = action({
args: { threadId: v.string(), userId: v.string(), question: v.string() },
handler: async (ctx, { threadId, userId, question }) => {
// Strategy 1: Check database for assigned responder
const assignment = await ctx.db
.query("threadAssignments")
.filter((a) => a.threadId === threadId)
.first();
if (assignment?.assignedTo === "human") {
return { responder: "human", requiresApproval: true };
}
// Strategy 2: Use fast LLM to classify
const classification = await myAgent.generateText(
ctx,
{ threadId },
{
prompt: `Should a human or AI respond? Question: ${question}`,
}
);
if (classification.text.includes("human")) {
return { responder: "human", reason: classification.text };
}
// Strategy 3: Use AI to respond
return { responder: "ai" };
},
});
4. Tool-Based Human Routing
Let AI call a tool to request human intervention:
// convex/humanAgents.ts
import { tool } from "ai";
import { z } from "zod";
import { action } from "./_generated/server";
import { v } from "convex/values";
import { myAgent } from "./agents/myAgent";
const askHumanTool = tool({
description: "Ask a human agent for help",
parameters: z.object({
question: z.string().describe("Question for the human"),
}),
});
export const generateWithHumanTool = action({
args: { threadId: v.string(), prompt: v.string() },
handler: async (ctx, { threadId, prompt }) => {
const result = await myAgent.generateText(
ctx,
{ threadId },
{
prompt,
tools: { askHuman: askHumanTool },
maxSteps: 5,
}
);
// Check if AI asked for human help
const humanRequests = result.toolCalls.filter(
(tc) => tc.toolName === "askHuman"
);
if (humanRequests.length > 0) {
// Notify human team
await ctx.runMutation(internal.humanAgents.notifyHumanTeam, {
threadId,
requests: humanRequests,
});
}
return result;
},
});
5. Human Response to Tool Call
AI requested human help via tool; human now responds:
// convex/humanAgents.ts
import { internalAction } from "./_generated/server";
import { v } from "convex/values";
import { saveMessage } from "@convex-dev/agent";
import { components } from "./_generated/api";
import { myAgent } from "./agents/myAgent";
export const humanRespondToToolCall = internalAction({
args: {
threadId: v.string(),
messageId: v.string(),
toolCallId: v.string(),
humanName: v.string(),
response: v.string(),
},
handler: async (
ctx,
{ threadId, messageId, toolCallId, humanName, response }
) => {
// Save human response as tool result
await saveMessage(ctx, components.agent, {
threadId,
message: {
role: "tool",
content: [
{
type: "tool-result",
toolName: "askHuman",
toolCallId,
result: response,
},
],
},
metadata: {
provider: "human",
providerMetadata: { human: { name: humanName } },
},
});
// Continue AI generation with human's response
const { thread } = await myAgent.continueThread(ctx, { threadId });
await thread.generateText({ promptMessageId: messageId });
},
});
6. Track Assignment
Store who should respond to a thread:
// convex/humanAgents.ts
import { mutation } from "./_generated/server";
import { v } from "convex/values";
export const assignThread = mutation({
args: {
threadId: v.string(),
assignedTo: v.union(v.literal("ai"), v.literal("human")),
assignedUser: v.optional(v.string()),
},
handler: async (ctx, { threadId, assignedTo, assignedUser }) => {
await ctx.db.insert("threadAssignments", {
threadId,
assignedTo,
assignedUser,
assignedAt: Date.now(),
});
},
});
7. Implement Approval Workflow
AI generates response; human approves before sending:
// convex/humanAgents.ts
import { action, mutation } from "./_generated/server";
import { v } from "convex/values";
import { saveMessage } from "@convex-dev/agent";
import { components } from "./_generated/api";
import { myAgent } from "./agents/myAgent";
// Step 1: Generate AI response (pending approval)
export const generateForApproval = action({
args: { threadId: v.string(), prompt: v.string() },
handler: async (ctx, { threadId, prompt }) => {
const { thread } = await myAgent.continueThread(ctx, { threadId });
const result = await thread.generateText({ prompt });
// Save as draft (not yet visible to user)
const { messageId } = await saveMessage(ctx, components.agent, {
threadId,
message: { role: "assistant", content: result.text },
metadata: { status: "pending_approval" },
});
// Notify human reviewer
await ctx.runMutation(internal.humanAgents.notifyForApproval, {
threadId,
messageId,
draftText: result.text,
});
return { messageId, draftText: result.text };
},
});
// Step 2: Human approves or rejects
export const approveOrRejectResponse = mutation({
args: {
messageId: v.string(),
approved: v.boolean(),
review: v.optional(v.string()),
},
handler: async (ctx, { messageId, approved, review }) => {
// Update message metadata
const message = await ctx.db.get(messageId);
if (message) {
await ctx.db.patch(messageId, {
metadata: {
...message.metadata,
status: approved ? "approved" : "rejected",
review,
},
});
}
},
});
8. Escalation System
Escalate to human when AI confidence is low:
// convex/humanAgents.ts
import { action } from "./_generated/server";
import { v } from "convex/values";
import { z } from "zod";
import { myAgent } from "./agents/myAgent";
export const generateWithConfidence = action({
args: { threadId: v.string(), prompt: v.string() },
handler: async (ctx, { threadId, prompt }) => {
const result = await myAgent.generateObject(
ctx,
{ threadId },
{
prompt,
schema: z.object({
response: z.string(),
confidence: z.number().min(0).max(1),
requiresHuman: z.boolean(),
}),
}
);
const { response, confidence, requiresHuman } = result.object;
if (requiresHuman || confidence < 0.7) {
// Escalate to human
await ctx.runMutation(internal.humanAgents.escalateToHuman, {
threadId,
reason: `AI confidence: ${confidence}`,
aiSuggestion: response,
});
return { escalated: true };
}
return { response, confidence };
},
});
Key Principles
- Hybrid workflows: Combine AI efficiency with human judgment
- Tool-based escalation: AI can request human help via tools
- Approval gates: Route sensitive responses through humans
- Metadata tracking: Mark messages as human-provided
- Assignment tracking: Know who should respond next
- Graceful fallback: Fall back to human when AI is uncertain
Example: Support Chat with Escalation
// convex/support.ts
import { mutation, action, query } from "./_generated/server";
import { v } from "convex/values";
import { saveMessage } from "@convex-dev/agent";
import { components } from "./_generated/api";
import { supportAgent } from "./agents";
import { z } from "zod";
import { tool } from "ai";
const escalateTool = tool({
description: "Escalate to human support",
parameters: z.object({
reason: z.string(),
}),
});
// User sends message
export const sendSupportMessage = mutation({
args: { threadId: v.string(), message: v.string() },
handler: async (ctx, { threadId, message }) => {
const { messageId } = await saveMessage(ctx, components.agent, {
threadId,
prompt: message,
});
return { messageId };
},
});
// AI or human responds
export const respondToTicket = action({
args: { threadId: v.string(), promptMessageId: v.string() },
handler: async (ctx, { threadId, promptMessageId }) => {
const result = await supportAgent.generateText(
ctx,
{ threadId },
{
promptMessageId,
tools: { escalate: escalateTool },
maxSteps: 3,
}
);
// Check if escalated
if (result.toolCalls.some((tc) => tc.toolName === "escalate")) {
await ctx.runMutation(internal.support.escalateTicket, { threadId });
}
},
});
// Human responds
export const humanReply = mutation({
args: { threadId: v.string(), humanName: v.string(), reply: v.string() },
handler: async (ctx, { threadId, humanName, reply }) => {
await saveMessage(ctx, components.agent, {
threadId,
agentName: humanName,
message: { role: "assistant", content: reply },
metadata: { provider: "human" },
});
},
});
Common Patterns
- First-touch by AI: Fast response for common issues
- Escalation on uncertainty: Human for complex cases
- Approval gate: Human reviews before sending
- Hybrid reasoning: AI analyzes, human decides
- Feedback loop: Humans improve AI over time
Next Steps
- Add streaming: See Convex Agents Streaming for real-time human responses
- Implement rate limiting: See Convex Agents Rate Limiting for limiting escalations
- Track usage: See Convex Agents Usage Tracking for billing human labor
Troubleshooting
- Too many escalations: Improve AI instructions or add more tools
- Humans overwhelmed: Implement better routing or queue management
- Lost context: Include thread history when notifying humans
- Slow response times: Monitor human response time SLAs
Quick Install
/plugin add https://github.com/Sstobo/convex-skills/tree/main/convex-agents-human-agentsCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
