Back to Skills

setup-assistant

RobThePCGuy
Updated Today
33 views
2
2
View on GitHub
Metaaidesign

About

The setup-assistant skill guides developers through installing, configuring, and performing first-time setup for the Claude Patent Creator MCP server. It provides a complete setup lifecycle from pre-installation checks to verification, including quick setup scripts and troubleshooting steps. Use it for initial installation, environment configuration, authentication setup, or when migrating to a new machine.

Documentation

Setup Assistant Skill

Expert system for installing, configuring, and setting up the Claude Patent Creator MCP server.

When to Use

Installing first time, setting up new environment, configuring authentication, troubleshooting installation, migrating to new machine, updating dependencies, verifying health.

Quick Setup (5 Minutes)

# 1. Create virtual environment
python -m venv venv
venv\Scripts\activate  # Windows
source venv/bin/activate  # Linux/macOS

# 2. Run installer
python install.py

# 3. Restart Claude Code

# 4. Test
# Ask Claude: "Search MPEP for claim definiteness"

Complete Setup Lifecycle

Phase 1: Pre-Installation Checks

Requirements:

  • Python 3.9-3.12 (3.11 recommended)
  • 8GB+ RAM (16GB recommended)
  • 5GB free disk
  • Optional: NVIDIA GPU with CUDA 12.x

Verify:

python --version  # Should show 3.9-3.12
nvidia-smi        # Optional: Check GPU

Phase 2: Virtual Environment

# Create venv
python -m venv venv

# Activate
venv\Scripts\activate  # Windows
source venv/bin/activate  # Linux/macOS

# Verify
which python  # Should show venv path

Important: Always activate venv before running scripts!

Phase 3: Dependency Installation

Automated (Recommended):

python install.py
# Handles: PyTorch order, GPU detection, MCP registration

Manual (Advanced):

# Install PyTorch FIRST (critical!)
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu128

# Then install package (includes all dependencies)
pip install -e .

Why PyTorch order matters: If installed after sentence-transformers, you get CPU-only version.

Phase 4: BigQuery Authentication

# Authenticate
gcloud auth application-default login \
  --scopes=https://www.googleapis.com/auth/cloud-platform

# Set project
gcloud config set project YOUR_PROJECT_ID

# Add to .env
echo "GOOGLE_CLOUD_PROJECT=YOUR_PROJECT_ID" >> .env

# Test
python scripts/test_bigquery.py

Phase 5: MCP Server Registration

Automated:

python install.py  # Handles registration automatically

Manual:

# Get paths
patent-creator verify-config

# Register (use forward slashes!)
claude mcp add --transport stdio claude-patent-creator --scope user -- \
  "C:/path/to/venv/Scripts/python.exe" \
  "C:/path/to/mcp_server/server.py"

# Verify
claude mcp list

Critical: Restart Claude Code after registration!

Phase 6: Configuration Files

Create .env:

# Required
GOOGLE_CLOUD_PROJECT=your_project_id
ANTHROPIC_API_KEY=<YOUR_ANTHROPIC_API_KEY>

# Optional
PATENT_LOG_LEVEL=INFO
PATENT_LOG_FORMAT=human
PATENT_ENABLE_METRICS=true

# Windows only
CLAUDE_CODE_GIT_BASH_PATH=C:\dev\Git\bin\bash.exe

Phase 7: Health Check

patent-creator health

# Expected:
# [OK] Python version OK
# [OK] Dependencies installed
# [OK] PyTorch with CUDA
# [OK] MPEP index loaded
# [OK] BigQuery configured
# [OK] All systems operational

Phase 8: Testing

python scripts/test_install.py
python scripts/test_gpu.py
python scripts/test_bigquery.py
python scripts/test_analyzers.py

Phase 9: First Use Validation

Test each capability:

1. "Search MPEP for claim definiteness requirements"
2. "Search for patents about neural networks filed in 2024"
3. "Review these claims: 1. A system comprising..."
4. "Create a flowchart for user login process"

If all work -> Setup complete!

Common Setup Issues

IssueSolution
PyTorch CPU-onlyReinstall PyTorch FIRST
MCP not loadingRestart Claude Code, verify with claude mcp list
Path errorsUse forward slashes (/) not backslashes (\)
BigQuery failsRe-auth: gcloud auth application-default login
Index not foundBuild: patent-creator rebuild-index
Import errorsActivate venv

Platform-Specific Notes

Windows

  • PowerShell: Use venv\Scripts\activate
  • Git Bash required for MCP commands
  • Paths: Always forward slashes in MCP config
  • CUDA: Install NVIDIA drivers + toolkit

Linux

  • venv: source venv/bin/activate
  • FAISS-GPU: Available on Linux only
  • Permissions: May need sudo

macOS

  • Apple Silicon: Use MPS (auto-detected)
  • Intel: Use CPU or external GPU
  • Homebrew: May need for dependencies

Update & Maintenance

Updating Dependencies

venv\Scripts\activate
pip install -e . --upgrade
python scripts/test_install.py

Rebuilding Index

patent-creator rebuild-index
# Wait 5-15 minutes

Re-registering MCP

claude mcp remove claude-patent-creator
python install.py
# Restart Claude Code

Quick Reference

Essential Commands

# Setup
python install.py
patent-creator health
claude mcp list

# Testing
python scripts/test_install.py
python scripts/test_gpu.py
python scripts/test_bigquery.py

# Maintenance
patent-creator rebuild-index
patent-creator verify-config

Critical Files

  • .env - Environment variables
  • requirements.txt - Dependencies
  • mcp_server/index/ - MPEP search index
  • pdfs/ - MPEP PDF files

Quick Install

/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creator/tree/main/setup-assistant

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

RobThePCGuy/Claude-Patent-Creator
Path: skills/setup-assistant
bigqueryclaude-codeclaude-code-pluginfaissmcp-servermpep

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill