Back to Skills

Validating AI Ethics and Fairness

jeremylongshore
Updated Yesterday
18 views
712
74
712
View on GitHub
Metaaidata

About

This skill enables Claude to validate the ethical implications and fairness of AI/ML models and datasets. It is triggered by requests for ethics reviews, fairness assessments, or bias detection and uses a dedicated plugin to analyze systems for potential issues. The skill then provides reports and actionable recommendations to mitigate identified concerns and promote responsible AI development.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git CloneAlternative
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/Validating AI Ethics and Fairness

Copy and paste this command in Claude Code to install this skill

Documentation

Overview

This skill empowers Claude to automatically assess and improve the ethical considerations and fairness of AI and machine learning projects. It leverages the ai-ethics-validator plugin to identify potential biases, evaluate fairness metrics, and suggest mitigation strategies, promoting responsible AI development.

How It Works

  1. Analysis Initiation: The skill is triggered by user requests related to AI ethics, fairness, or bias detection.
  2. Ethical Validation: The ai-ethics-validator plugin analyzes the provided AI model, dataset, or code for potential ethical concerns and biases.
  3. Report Generation: The plugin generates a detailed report outlining identified issues, fairness metrics, and recommended mitigation strategies.

When to Use This Skill

This skill activates when you need to:

  • Evaluate the fairness of an AI model across different demographic groups.
  • Detect and mitigate bias in a training dataset.
  • Assess the ethical implications of an AI-powered application.

Examples

Example 1: Fairness Evaluation

User request: "Evaluate the fairness of this loan application model."

The skill will:

  1. Invoke the ai-ethics-validator plugin to analyze the model's predictions across different demographic groups.
  2. Generate a report highlighting any disparities in approval rates or loan terms.

Example 2: Bias Detection

User request: "Detect bias in this image recognition dataset."

The skill will:

  1. Utilize the ai-ethics-validator plugin to analyze the dataset for representation imbalances across different categories.
  2. Generate a report identifying potential biases and suggesting data augmentation or re-sampling strategies.

Best Practices

  • Data Integrity: Ensure the input data is accurate, representative, and properly preprocessed.
  • Metric Selection: Choose appropriate fairness metrics based on the specific application and potential impact.
  • Transparency: Document the ethical considerations and mitigation strategies implemented throughout the AI development process.

Integration

This skill can be integrated with other plugins for data analysis, model training, and deployment to ensure ethical considerations are incorporated throughout the entire AI lifecycle. For example, it can be combined with a data visualization plugin to explore the distribution of data across different demographic groups.

GitHub Repository

jeremylongshore/claude-code-plugins-plus
Path: backups/plugin-enhancements/plugin-backups/ai-ethics-validator_20251019_182858/skills/skill-adapter
aiautomationclaude-codedevopsmarketplacemcp

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill