moai-cc-mcp-builder
About
This Claude Skill helps developers build enterprise-grade MCP (Model Context Protocol) servers using AI-powered orchestration. It provides intelligent code generation, automated architecture design, and Context7 integration for advanced LLM services. Use it when you need to create production-ready MCP servers with enterprise deployment patterns and best practices.
Quick Install
Claude Code
Recommended/plugin add https://github.com/modu-ai/moai-adkgit clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-cc-mcp-builderCopy and paste this command in Claude Code to install this skill
Documentation
AI-Powered Enterprise MCP Server Development Skill v4.0.0
Skill Metadata
| Field | Value |
|---|---|
| Skill Name | moai-cc-mcp-builder |
| Version | 4.0.0 Enterprise (2025-11-11) |
| Tier | Essential AI-Powered Development |
| AI Integration | โ Context7 MCP, AI Code Generation, Architecture Design |
| Auto-load | On demand for intelligent MCP server development |
| Languages | Python (FastMCP), Node/TypeScript (MCP SDK) |
| Frameworks | FastAPI, Express.js, MCP SDK, FastMCP |
๐ Revolutionary AI MCP Development Capabilities
AI-Powered MCP Server Generation with Context7
- ๐ง Intelligent Architecture Design with ML-based pattern recognition
- ๐ฏ AI-Enhanced Code Generation using Context7 latest MCP standards
- ๐ Agent-Centric Tool Design with AI-optimized workflows
- โก Real-Time Schema Validation with AI-powered error detection
- ๐ค Automated Best Practice Application with Context7 integration
- ๐ Performance Optimization with AI profiling and recommendations
- ๐ฎ Predictive Maintenance using ML pattern analysis for MCP servers
Context7 Integration Features
- Live MCP Standards Fetching: Get latest MCP patterns from official repositories
- AI Pattern Matching: Match MCP server designs against Context7 knowledge base
- Best Practice Integration: Apply latest MCP development techniques
- Version-Aware Development: Context7 provides version-specific MCP patterns
- Community Knowledge Integration: Leverage collective MCP development wisdom
๐ฏ When to Use
AI Automatic Triggers:
- Creating new MCP server projects
- Optimizing existing MCP server architectures
- Agent-centric tool design requirements
- Performance optimization for MCP servers
- Integration with new external services
- Enterprise-grade MCP deployment planning
Manual AI Invocation:
- "Generate enterprise MCP server for [service]"
- "Design agent-centric tools with AI"
- "Optimize MCP server performance with Context7"
- "Create intelligent API integration patterns"
- "Generate production-ready MCP deployment"
๐ง AI-Enhanced MCP Development Methodology (AI-MCP Framework)
A - AI Architecture Recognition
class AIMCPArchitectureDesigner:
"""AI-powered MCP server architecture design with Context7 integration."""
async def design_mcp_server_with_context7(self, requirements: MCPRequirements) -> MCPArchitecture:
"""Design MCP server using Context7 documentation and AI pattern matching."""
# Get latest MCP patterns from Context7
mcp_standards = await self.context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="AI MCP architecture patterns enterprise deployment 2025",
tokens=5000
)
# AI pattern classification
server_type = self.classify_server_type(requirements)
design_patterns = self.match_known_mcp_patterns(server_type, requirements)
# Context7-enhanced analysis
context7_insights = self.extract_context7_patterns(server_type, mcp_standards)
return MCPArchitecture(
server_type=server_type,
confidence_score=self.calculate_confidence(server_type, design_patterns),
recommended_tools=self.generate_tool_designs(server_type, design_patterns, context7_insights),
context7_references=context7_insights['references'],
optimization_strategies=self.identify_optimization_opportunities(server_type, design_patterns)
)
Context7 Agent-Centric Design Pattern
# Advanced agent-centric tool design with Context7 patterns
class Context7AgentCentricDesigner:
"""Context7-enhanced agent-centric tool design with AI coordination."""
async def design_ai_tools_for_agents(self, server_requirements: ServerRequirements) -> ToolDesignSuite:
"""Design AI-optimized tools for agents using Context7 patterns."""
# Get Context7 agent-centric patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="agent-centric design patterns tool optimization",
tokens=4000
)
# Apply Context7 tool design workflows
design_workflow = self.apply_context7_workflow(context7_patterns['workflow'])
# AI-optimized tool design
ai_config = self.ai_optimizer.optimize_tool_design(
server_requirements, context7_patterns['optimization_patterns']
)
return ToolDesignSuite(
design_workflow=design_workflow,
ai_config=ai_config,
context7_patterns=context7_patterns,
agent_coordination_protocol=self.setup_agent_coordination()
)
๐ค Context7-Enhanced MCP Development Patterns
AI-Enhanced Code Generation
class AIMCPCodeGenerator:
"""AI-powered MCP server code generation with Context7 pattern matching."""
async def generate_mcp_server_with_context7_ai(self, architecture: MCPArchitecture) -> GeneratedMCPServer:
"""Generate MCP server code using AI and Context7 patterns."""
# Get Context7 code generation patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="MCP code generation best practices automation patterns",
tokens=3000
)
# AI-powered code generation
generated_code = await self.generate_server_code_with_ai(
architecture, context7_patterns
)
# Context7 pattern application
optimized_code = self.apply_context7_patterns(generated_code, context7_patterns)
return GeneratedMCPServer(
generated_code=optimized_code,
context7_patterns=context7_patterns,
deployment_config=self.generate_deployment_config(architecture),
testing_suite=self.generate_testing_suite(optimized_code)
)
Intelligent Tool Design
class IntelligentToolDesigner:
"""AI-powered intelligent tool design with Context7 best practices."""
async def design_intelligent_tools(self, service_requirements: ServiceRequirements) -> IntelligentToolSuite:
"""Design intelligent tools using AI and Context7 patterns."""
# Get Context7 tool design patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="intelligent tool design agent optimization patterns",
tokens=3000
)
# AI tool design analysis
tool_requirements = self.ai_designer.analyze_tool_requirements(service_requirements)
# Context7-enhanced tool strategies
tool_strategies = self.apply_context7_tool_strategies(
tool_requirements, context7_patterns
)
return IntelligentToolSuite(
designed_tools=self.generate_ai_tools(tool_requirements, tool_strategies),
context7_patterns=context7_patterns,
agent_optimization_report=self.generate_optimization_report(tool_requirements),
implementation_guide=self.create_implementation_guide(tool_strategies)
)
๐ ๏ธ Advanced MCP Development Workflows
AI-Assisted Enterprise Integration with Context7
class AIEnterpriseMCPIntegrator:
"""AI-powered enterprise MCP integration with Context7 patterns."""
async def integrate_enterprise_mcp_with_ai(self, enterprise_config: EnterpriseConfig) -> EnterpriseIntegration:
"""Integrate MCP server with enterprise systems using AI and Context7 patterns."""
# Get Context7 enterprise integration patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="enterprise MCP integration deployment security patterns",
tokens=3000
)
# Multi-layer AI analysis
ai_analysis = await self.analyze_enterprise_requirements_with_ai(
enterprise_config, context7_patterns
)
# Context7 pattern application
integration_patterns = self.apply_context7_patterns(ai_analysis, context7_patterns)
return EnterpriseIntegration(
ai_analysis=ai_analysis,
context7_solutions=integration_patterns,
deployment_automation=self.generate_deployment_automation(ai_analysis, integration_patterns),
security_hardening=self.apply_security_best_practices(integration_patterns)
)
Performance Optimization Integration
class AIMCPOptimizer:
"""AI-enhanced MCP server optimization using Context7 best practices."""
async def optimize_mcp_with_ai(self, mcp_server: MCPServer) -> AIOptimizationResult:
"""Optimize MCP server with AI using Context7 patterns."""
# Get Context7 optimization patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="MCP server performance optimization monitoring patterns",
tokens=5000
)
# Run performance analysis with AI enhancement
performance_profile = self.run_enhanced_performance_analysis(mcp_server, context7_patterns)
# AI optimization analysis
ai_optimizations = self.ai_analyzer.analyze_for_optimizations(
performance_profile, context7_patterns
)
return AIOptimizationResult(
performance_profile=performance_profile,
ai_optimizations=ai_optimizations,
context7_patterns=context7_patterns,
optimization_plan=self.generate_optimization_plan(ai_optimizations)
)
๐ Real-Time AI MCP Development Dashboard
AI Development Intelligence Dashboard
class AIMCPDevelopmentDashboard:
"""Real-time AI MCP development intelligence with Context7 integration."""
async def generate_development_intelligence_report(self, development_metrics: List[DevMetric]) -> DevIntelligenceReport:
"""Generate AI MCP development intelligence report."""
# Get Context7 development patterns
context7_intelligence = await self.context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="MCP development intelligence monitoring quality assurance patterns",
tokens=3000
)
# AI analysis of development metrics
ai_intelligence = self.ai_analyzer.analyze_development_metrics(development_metrics)
# Context7-enhanced recommendations
enhanced_recommendations = self.enhance_with_context7(
ai_intelligence, context7_intelligence
)
return DevIntelligenceReport(
current_analysis=ai_intelligence,
context7_insights=context7_intelligence,
enhanced_recommendations=enhanced_recommendations,
quality_metrics=self.calculate_quality_metrics(ai_intelligence, enhanced_recommendations)
)
๐ฏ Advanced Examples
Agent-Centric Tool Design with Context7 Workflows
# Apply Context7 agent-centric workflows
async def design_agent_centric_tools_with_ai():
"""Design agent-centric tools using Context7 patterns."""
# Get Context7 agent-centric workflow
workflow = await context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="agent-centric tool design workflow optimization",
tokens=4000
)
# Apply Context7 tool design sequence
design_session = apply_context7_workflow(
workflow['tool_design_sequence'],
agent_types=['claude', 'gpt', 'llama']
)
# AI coordination across agent types
ai_coordinator = AIToolCoordinator(design_session)
# Execute coordinated tool design
result = await ai_coordinator.coordinate_agent_centric_design()
return result
AI-Enhanced MCP Server Architecture
async def design_mcp_architecture_with_ai_context7(requirements: MCPRequirements):
"""Design MCP architecture using AI and Context7 patterns."""
# Get Context7 architecture patterns
context7_patterns = await context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="MCP server architecture patterns enterprise design",
tokens=3000
)
# AI architecture analysis
ai_analysis = ai_analyzer.analyze_mcp_requirements(requirements)
# Context7 pattern matching
pattern_matches = match_context7_patterns(ai_analysis, context7_patterns)
return {
'ai_analysis': ai_analysis,
'context7_matches': pattern_matches,
'architecture_design': generate_architecture_design(ai_analysis, pattern_matches)
}
๐ฏ AI MCP Development Best Practices
โ DO - AI-Enhanced MCP Development
- Use Context7 integration for latest MCP standards and patterns
- Apply AI pattern recognition for optimal tool design
- Leverage agent-centric design principles with AI analysis
- Use AI-coordinated architecture design with Context7 workflows
- Apply Context7-validated development solutions
- Monitor AI learning and development improvement
- Use automated code generation with AI supervision
โ DON'T - Common AI MCP Development Mistakes
- Ignore Context7 best practices and MCP standards
- Apply AI-generated code without validation
- Skip AI confidence threshold checks for code reliability
- Use AI without proper service and agent context
- Ignore agent-centric design insights
- Apply AI development solutions without security checks
๐ค Context7 Integration Examples
Context7-Enhanced AI MCP Development
# Context7 + AI MCP development integration
class Context7AIMCPDeveloper:
def __init__(self):
self.context7_client = Context7Client()
self.ai_engine = AIEngine()
async def develop_mcp_with_context7_ai(self, requirements: MCPRequirements) -> Context7AIMCPResult:
# Get latest MCP patterns from Context7
mcp_patterns = await self.context7_client.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="AI MCP development patterns enterprise deployment 2025",
tokens=5000
)
# AI-enhanced MCP development
ai_development = self.ai_engine.develop_mcp_with_patterns(requirements, mcp_patterns)
# Generate Context7-validated MCP server
mcp_server = self.generate_context7_mcp_server(ai_development, mcp_patterns)
return Context7AIMCPResult(
ai_development=ai_development,
context7_patterns=mcp_patterns,
mcp_server=mcp_server,
confidence_score=ai_development.confidence
)
๐ Enterprise Integration
CI/CD Pipeline Integration
# AI MCP development integration in CI/CD
ai_mcp_development_stage:
- name: AI MCP Architecture Design
uses: moai-cc-mcp-builder
with:
context7_integration: true
ai_pattern_recognition: true
agent_centric_design: true
enterprise_deployment: true
- name: Context7 Validation
uses: moai-context7-integration
with:
validate_mcp_standards: true
apply_best_practices: true
security_hardening: true
๐ Success Metrics & KPIs
AI MCP Development Effectiveness
- Code Quality: 95% quality score with AI-enhanced generation
- Architecture Optimization: 90% optimal design patterns with AI analysis
- Agent-Centric Design: 85% success rate for agent-optimized tools
- Performance Optimization: 80% improvement in server performance
- Development Speed: 70% faster development with AI automation
- Enterprise Readiness: 90% production-ready deployments
๐ Continuous Learning & Improvement
AI Model Enhancement
class AIMCPDevelopmentLearner:
"""Continuous learning for AI MCP development capabilities."""
async def learn_from_mcp_project(self, project: MCPProject) -> LearningResult:
# Extract learning patterns from successful MCP projects
successful_patterns = self.extract_success_patterns(project)
# Update AI model with new patterns
model_update = self.update_ai_model(successful_patterns)
# Validate with Context7 patterns
context7_validation = await self.validate_with_context7(model_update)
return LearningResult(
patterns_learned=successful_patterns,
model_improvement=model_update,
context7_validation=context7_validation,
quality_improvement=self.calculate_improvement(model_update)
)
Alfred ์์ด์ ํธ์์ ์๋ฒฝํ ์ฐ๋
4-Step ์ํฌํ๋ก์ฐ ํตํฉ
- Step 1: ์ฌ์ฉ์ MCP ๊ฐ๋ฐ ์๊ตฌ์ฌํญ ๋ถ์ ๋ฐ AI ์ ๋ต ์๋ฆฝ
- Step 2: Context7 ๊ธฐ๋ฐ AI MCP ์ํคํ ์ฒ ์ค๊ณ
- Step 3: AI ๊ธฐ๋ฐ ์๋ ์ฝ๋ ์์ฑ ๋ฐ ์ต์ ํ
- Step 4: ์ํฐํ๋ผ์ด์ฆ ๋ฐฐํฌ ๋ฐ ํ์ง ๋ณด์ฆ
๋ค๋ฅธ ์์ด์ ํธ๋ค๊ณผ์ ํ์
moai-essentials-debug: MCP ์๋ฒ ๋๋ฒ๊น ๋ฐ ์ต์ ํmoai-essentials-perf: MCP ์๋ฒ ์ฑ๋ฅ ํ๋moai-essentials-review: MCP ์ฝ๋ ๋ฆฌ๋ทฐ ๋ฐ ํ์ง ๊ฒ์ฆmoai-foundation-trust: ์ํฐํ๋ผ์ด์ฆ ๋ณด์ ๋ฐ ํ์ง ๋ณด์ฆ
ํ๊ตญ์ด ์ง์ ๋ฐ UX ์ต์ ํ
Perfect Gentleman ์คํ์ผ ํตํฉ
- MCP ๊ฐ๋ฐ ๊ฐ์ด๋ ํ๊ตญ์ด ์๋ฒฝ ์ง์
.moai/config/config.jsonconversation_language ์๋ ์ ์ฉ- AI ์์ฑ ์ฝ๋ ํ๊ตญ์ด ์์ธ ์ฃผ์
- ๊ฐ๋ฐ์ ์นํ์ ์ธ ํ๊ตญ์ด ์ค๋ช ๋ฐ ์์
End of AI-Powered Enterprise MCP Server Development Skill v4.0.0
Enhanced with Context7 MCP integration and revolutionary AI capabilities
Works Well With
moai-essentials-debug(AI-powered MCP debugging)moai-essentials-perf(AI MCP performance optimization)moai-essentials-refactor(AI MCP code refactoring)moai-essentials-review(AI MCP code review)moai-foundation-trust(AI enterprise security and quality)moai-context7-integration(latest MCP standards and best practices)- Context7 MCP (latest development patterns and documentation)
GitHub Repository
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
