moai-foundation-langs
About
This Claude Skill helps developers select optimal programming languages using AI-powered analysis and Context7 integration. It provides intelligent multi-language orchestration for enterprise technology stack decisions and production deployments. Use it when you need guidance on language selection or multi-language architecture planning.
Quick Install
Claude Code
Recommended/plugin add https://github.com/modu-ai/moai-adkgit clone https://github.com/modu-ai/moai-adk.git ~/.claude/skills/moai-foundation-langsCopy and paste this command in Claude Code to install this skill
Documentation
Enterprise Programming Languages Foundation Expert v4.0.0
Skill Metadata
| Field | Value |
|---|---|
| Skill Name | moai-foundation-langs |
| Version | 4.0.0 (2025-11-13) |
| Tier | Foundation Language Expert |
| AI-Powered | β Context7 Integration, Intelligent Selection |
| Auto-load | On demand when language selection keywords detected |
What It Does
Enterprise Programming Languages Foundation expert with AI-powered language selection, Context7 integration, and intelligent multi-language orchestration for optimal technology choices.
Revolutionary v4.0.0 capabilities:
- π€ AI-Powered Language Selection using Context7 MCP for latest language ecosystem insights
- π Intelligent Technology Stacking with automated compatibility and performance analysis
- π Advanced Multi-Language Integration with AI-driven interoperability optimization
- π Enterprise Language Governance with zero-configuration standardization policies
- π Predictive Performance Analysis with language-specific optimization insights
When to Use
Automatic triggers:
- Programming language selection and technology stack discussions
- Multi-language architecture design and integration planning
- Language performance optimization and compatibility analysis
- Enterprise technology standardization and governance
Manual invocation:
- Selecting optimal programming languages for specific use cases
- Designing multi-language architectures with interoperability
- Planning technology migrations and modernization strategies
- Optimizing performance for specific language ecosystems
Quick Reference (Level 1)
Modern Language Ecosystem (November 2025)
High-Performance Systems
- Rust 1.83: Memory safety, zero-cost abstractions, async/await
- Go 1.22: Concurrency, garbage collection, simple deployment
- C++ 23: Modern features, performance optimization, systems programming
- Zig 0.13: Simple, fast, safe systems programming
Web Development
- TypeScript 5.5: Type safety, modern JavaScript, excellent tooling
- JavaScript (ES2025): Dynamic, ubiquitous, large ecosystem
- Python 3.13: Productivity, AI/ML focus, extensive libraries
- PHP 8.4: Web optimization, JIT compiler, modern syntax
Data Science & AI
- Python: NumPy, pandas, TensorFlow, PyTorch ecosystem
- R: Statistical analysis, data visualization, research
- Julia 1.10: High-performance scientific computing
- Scala 3: Big data processing, Apache Spark integration
Mobile & Cross-Platform
- Kotlin 2.1: Android development, multiplatform mobile
- Swift 6: iOS development, performance, safety
- Flutter 3.24: Cross-platform UI, Dart language
- React Native 0.76: JavaScript-based mobile development
Core Implementation (Level 2)
Language Selection Intelligence
# AI-powered language selection with Context7
class LanguageSelectionOptimizer:
def __init__(self):
self.context7_client = Context7Client()
self.performance_analyzer = LanguagePerformanceAnalyzer()
self.compatibility_checker = LanguageCompatibilityChecker()
async def select_optimal_languages(self,
requirements: ProjectRequirements) -> LanguageSelection:
"""Select optimal programming languages using AI analysis."""
# Get latest language documentation via Context7
language_docs = {}
primary_languages = ['typescript', 'python', 'rust', 'go', 'java', 'kotlin']
for lang in primary_languages:
docs = await self.context7_client.get_library_docs(
context7_library_id=await self._resolve_language_library(lang),
topic="performance optimization ecosystem best practices 2025",
tokens=2000
)
language_docs[lang] = docs
# Analyze project requirements
requirement_analysis = self._analyze_requirements(requirements)
# Optimize language combinations
language_combinations = self._generate_language_combinations(
requirement_analysis,
language_docs
)
# Evaluate performance characteristics
performance_evaluation = await self.performance_analyzer.evaluate_languages(
language_combinations,
requirement_analysis.performance_requirements,
language_docs
)
# Check compatibility and integration
compatibility_analysis = await self.compatibility_checker.check_compatibility(
language_combinations,
requirement_analysis.integration_requirements
)
return LanguageSelection(
recommended_stack=self._select_optimal_stack(
language_combinations,
performance_evaluation,
compatibility_analysis
),
alternative_stacks=self._identify_alternatives(
language_combinations,
performance_evaluation
),
performance_comparison=performance_evaluation,
compatibility_matrix=compatibility_analysis,
migration_strategy=self._plan_migration_strategy(requirements),
risk_assessment=self._assess_language_risks(
language_combinations,
compatibility_analysis
)
)
Multi-Language Architecture Patterns
class MultiLanguageArchitect:
def __init__(self):
self.integration_patterns = IntegrationPatternLibrary()
self.performance_optimizer = CrossLanguageOptimizer()
def design_multi_language_architecture(self,
language_selection: LanguageSelection,
system_requirements: SystemRequirements) -> MultiLanguageArchitecture:
"""Design optimized multi-language system architecture."""
# Define service boundaries based on language strengths
service_boundaries = self._define_service_boundaries(
language_selection.recommended_stack,
system_requirements.domain_boundaries
)
# Design integration patterns
integration_patterns = self.integration_patterns.select_patterns(
service_boundaries,
system_requirements.communication_requirements
)
# Optimize cross-language performance
performance_optimization = self.performance_optimizer.optimize_cross_language_performance(
language_selection.recommended_stack,
service_boundaries,
integration_patterns
)
return MultiLanguageArchitecture(
service_boundaries=service_boundaries,
integration_patterns=integration_patterns,
performance_optimization=performance_optimization,
deployment_strategy=self._design_deployment_strategy(
service_boundaries,
language_selection.recommended_stack
),
monitoring_setup=self._configure_monitoring(
service_boundaries,
integration_patterns
)
)
def _define_service_boundaries(self,
recommended_stack: LanguageStack,
domain_boundaries: List[DomainBoundary]) -> List[ServiceDefinition]:
"""Define service boundaries based on language strengths."""
services = []
for domain in domain_boundaries:
optimal_language = self._select_optimal_language_for_domain(
domain, recommended_stack
)
service = ServiceDefinition(
name=domain.name,
domain=domain,
language=optimal_language,
responsibilities=domain.responsibilities,
interfaces=self._define_service_interfaces(domain, optimal_language),
dependencies=self._identify_dependencies(domain, domain_boundaries),
performance_requirements=domain.performance_requirements
)
services.append(service)
return services
class IntegrationPatternLibrary:
def __init__(self):
self.patterns = {
'rest_api': RESTAPIPattern(),
'graphql': GraphQLPattern(),
'message_queue': MessageQueuePattern(),
'event_bus': EventBusPattern(),
'shared_database': SharedDatabasePattern(),
'grpc': GRPCPattern(),
'websocket': WebSocketPattern()
}
def select_patterns(self,
service_boundaries: List[ServiceDefinition],
communication_requirements: CommunicationRequirements) -> List[IntegrationPattern]:
"""Select optimal integration patterns for service communication."""
selected_patterns = []
for service in service_boundaries:
for dependency in service.dependencies:
pattern = self._select_pattern_for_dependency(
service, dependency, communication_requirements
)
if pattern and pattern not in selected_patterns:
selected_patterns.append(pattern)
return selected_patterns
Performance Optimization Strategies
// Cross-language performance optimization
export class LanguagePerformanceOptimizer {
private languageProfiles = new Map<string, LanguageProfile>();
constructor() {
this.initializeLanguageProfiles();
}
private initializeLanguageProfiles() {
// Rust profile - systems programming
this.languageProfiles.set('rust', {
strengths: ['performance', 'memory_safety', 'concurrency'],
weaknesses: ['development_speed', 'ecosystem_size'],
useCases: ['systems_programming', 'high_performance_services', 'cli_tools'],
benchmarks: {
cpuIntensive: 95,
memoryEfficiency: 98,
developmentSpeed: 60,
ecosystemMaturity: 75
}
});
// TypeScript profile - web development
this.languageProfiles.set('typescript', {
strengths: ['type_safety', 'ecosystem', 'tooling'],
weaknesses: ['runtime_performance', 'memory_usage'],
useCases: ['web_apis', 'frontend_development', 'microservices'],
benchmarks: {
cpuIntensive: 70,
memoryEfficiency: 65,
developmentSpeed: 90,
ecosystemMaturity: 95
}
});
// Go profile - backend services
this.languageProfiles.set('go', {
strengths: ['concurrency', 'deployment', 'simplicity'],
weaknesses: ['generic_programming', 'error_handling'],
useCases: ['microservices', 'cli_tools', 'network_services'],
benchmarks: {
cpuIntensive: 85,
memoryEfficiency: 80,
developmentSpeed: 85,
ecosystemMaturity: 80
}
});
}
optimizeLanguageSelection(requirements: ProjectRequirements): LanguageOptimization {
const languageScores = new Map<string, number>();
// Score each language against requirements
for (const [language, profile] of this.languageProfiles) {
let score = 0;
// Performance requirements
if (requirements.performance === 'high') {
score += profile.benchmarks.cpuIntensive * 0.3;
score += profile.benchmarks.memoryEfficiency * 0.2;
} else if (requirements.performance === 'medium') {
score += profile.benchmarks.cpuIntensive * 0.2;
score += profile.benchmarks.memoryEfficiency * 0.1;
}
// Development speed requirements
if (requirements.timeline === 'short') {
score += profile.benchmarks.developmentSpeed * 0.3;
} else {
score += profile.benchmarks.developmentSpeed * 0.1;
}
// Ecosystem maturity requirements
if (requirements.complexity === 'high') {
score += profile.benchmarks.ecosystemMaturity * 0.2;
} else {
score += profile.benchmarks.ecosystemMaturity * 0.1;
}
languageScores.set(language, score);
}
// Sort languages by score
const sortedLanguages = Array.from(languageScores.entries())
.sort((a, b) => b[1] - a[1])
.slice(0, 5); // Top 5 languages
return {
primaryRecommendation: sortedLanguages[0][0],
alternatives: sortedLanguages.slice(1).map(([lang]) => lang),
scores: Object.fromEntries(languageScores),
reasoning: this.generateReasoning(sortedLanguages, requirements)
};
}
private generateReasoning(
sortedLanguages: [string, number][],
requirements: ProjectRequirements
): string {
const [primary, score] = sortedLanguages[0];
const profile = this.languageProfiles.get(primary)!;
let reasoning = `${primary} is recommended because it excels in `;
if (requirements.performance === 'high') {
reasoning += `performance (CPU: ${profile.benchmarks.cpuIntensive}%, Memory: ${profile.benchmarks.memoryEfficiency}%)`;
}
if (requirements.timeline === 'short') {
reasoning += ` and has fast development speed (${profile.benchmarks.developmentSpeed}%)`;
}
reasoning += `. It's particularly suited for ${profile.useCases.join(', ')}.`;
return reasoning;
}
}
Advanced Implementation (Level 3)
Language Migration Strategies
class LanguageMigrationPlanner:
def __init__(self):
self.risk_assessor = MigrationRiskAssessor()
self.cost_analyzer = MigrationCostAnalyzer()
def plan_migration(self,
current_stack: TechnologyStack,
target_stack: TechnologyStack,
migration_scope: MigrationScope) -> MigrationPlan:
"""Plan comprehensive language migration strategy."""
# Risk assessment
risk_assessment = self.risk_assessor.assess_migration_risks(
current_stack,
target_stack,
migration_scope
)
# Cost analysis
cost_analysis = self.cost_analyzer.analyze_migration_costs(
current_stack,
target_stack,
migration_scope,
risk_assessment
)
# Migration phases
migration_phases = self._plan_migration_phases(
current_stack,
target_stack,
migration_scope,
risk_assessment
)
return MigrationPlan(
risk_assessment=risk_assessment,
cost_analysis=cost_analysis,
migration_phases=migration_phases,
rollback_strategy=self._create_rollback_strategy(current_stack),
validation_criteria=self._create_validation_criteria(target_stack),
team_training_plan=self._create_team_training_plan(target_stack)
)
def _plan_migration_phases(self,
current_stack: TechnologyStack,
target_stack: TechnologyStack,
migration_scope: MigrationScope,
risk_assessment: RiskAssessment) -> List[MigrationPhase]:
"""Plan detailed migration phases."""
phases = []
# Phase 1: Preparation
phases.append(MigrationPhase(
name="Preparation",
duration="2-4 weeks",
activities=[
"Set up development environments for target language",
"Create proof-of-concept implementations",
"Define migration standards and guidelines",
"Train development team on target language"
],
deliverables=[
"Development environment setup",
"POC implementations",
"Migration guidelines",
"Team training completion"
],
risks=["Learning curve", "Tooling setup"],
mitigation=["Comprehensive training", "Expert consultation"]
))
# Phase 2: Gradual Migration
phases.append(MigrationPhase(
name="Gradual Migration",
duration="8-16 weeks",
activities=[
"Migrate non-critical components first",
"Implement parallel systems for validation",
"Gradually migrate core functionality",
"Monitor performance and stability"
],
deliverables=[
"Migrated components",
"Parallel system implementation",
"Performance monitoring setup",
"Migration progress reports"
],
risks=["System instability", "Performance degradation"],
mitigation=["Comprehensive testing", "Gradual rollout"]
))
# Phase 3: Full Migration
phases.append(MigrationPhase(
name="Full Migration",
duration="4-8 weeks",
activities=[
"Decommission legacy systems",
"Complete migration of remaining components",
"Optimize performance in target language",
"Finalize documentation and knowledge transfer"
],
deliverables=[
"Complete system migration",
"Legacy system decommissioning",
"Performance optimization",
"Final documentation"
],
risks=["Data loss", "System downtime"],
mitigation=["Comprehensive backups", "Maintenance windows"]
))
return phases
Ecosystem Integration
// Language ecosystem integration management
export class EcosystemIntegrationManager {
private ecosystemIntegrators = new Map<string, EcosystemIntegrator>();
constructor() {
this.setupEcosystemIntegrators();
}
private setupEcosystemIntegrators() {
// Node.js ecosystem
this.ecosystemIntegrators.set('typescript', new NodeJSIntegrator());
// Python ecosystem
this.ecosystemIntegrators.set('python', new PythonIntegrator());
// Rust ecosystem
this.ecosystemIntegrators.set('rust', new RustIntegrator());
// Go ecosystem
this.ecosystemIntegrators.set('go', new GoIntegrator());
}
async setupLanguageEnvironment(language: string, projectConfig: ProjectConfig): Promise<EnvironmentSetup> {
const integrator = this.ecosystemIntegrators.get(language);
if (!integrator) {
throw new Error(`No ecosystem integrator available for ${language}`);
}
return await integrator.setupEnvironment(projectConfig);
}
async manageDependencies(language: string, dependencies: Dependency[]): Promise<DependencyManagement> {
const integrator = this.ecosystemIntegrators.get(language);
if (!integrator) {
throw new Error(`No ecosystem integrator available for ${language}`);
}
return await integrator.manageDependencies(dependencies);
}
}
// TypeScript/Node.js ecosystem integrator
class NodeJSIntegrator implements EcosystemIntegrator {
async setupEnvironment(projectConfig: ProjectConfig): Promise<EnvironmentSetup> {
return {
packageManager: this.selectPackageManager(projectConfig),
buildTool: this.selectBuildTool(projectConfig),
testingFramework: this.selectTestingFramework(projectConfig),
linting: this.setupLinting(),
typeChecking: this.setupTypeChecking(),
bundler: this.selectBundler(projectConfig)
};
}
async manageDependencies(dependencies: Dependency[]): Promise<DependencyManagement> {
const packageJson = this.generatePackageJson(dependencies);
const lockFile = await this.generateLockFile(dependencies);
return {
packageJson,
lockFile,
versionConflicts: this.detectVersionConflicts(dependencies),
securityVulnerabilities: await this.checkSecurityVulnerabilities(dependencies),
optimizationSuggestions: this.generateOptimizationSuggestions(dependencies)
};
}
private selectPackageManager(projectConfig: ProjectConfig): PackageManager {
switch (projectConfig.packageManager) {
case 'npm':
return { name: 'npm', version: 'latest', lockFile: 'package-lock.json' };
case 'yarn':
return { name: 'yarn', version: 'latest', lockFile: 'yarn.lock' };
case 'pnpm':
return { name: 'pnpm', version: 'latest', lockFile: 'pnpm-lock.yaml' };
default:
return { name: 'npm', version: 'latest', lockFile: 'package-lock.json' };
}
}
}
Reference & Integration (Level 4)
API Reference
Core Language Operations
select_languages(requirements, constraints)- Optimal language selectionanalyze_compatibility(languages, integrations)- Compatibility analysisoptimize_performance(stack, requirements)- Performance optimizationplan_migration(from_stack, to_stack)- Migration planningsetup_ecosystem(language, project_config)- Environment setup
Context7 Integration
get_latest_language_documentation()- Language docs via Context7analyze_ecosystem_trends()- Ecosystem analysis via Context7optimize_language_patterns()- Language optimization via Context7
Best Practices (November 2025)
DO
- Select languages based on project requirements and team expertise
- Consider performance, ecosystem, and maintenance requirements
- Plan for multi-language integration from the beginning
- Use appropriate integration patterns for cross-language communication
- Invest in team training for new languages
- Monitor performance across different language components
- Plan migration strategies with risk mitigation
- Consider long-term maintenance and ecosystem stability
DON'T
- Select languages based solely on popularity or trends
- Ignore integration complexity in multi-language architectures
- Skip performance testing across language boundaries
- Forget about team learning curves and expertise requirements
- Neglect dependency management across different ecosystems
- Underestimate migration costs and risks
- Ignore security implications of language choices
- Forget about long-term support and ecosystem health
Works Well With
moai-baas-foundation(Technology stack selection)moai-domain-backend(Backend language patterns)moai-domain-frontend(Frontend language patterns)moai-foundation-trust(Language security and compliance)moai-essentials-perf(Language performance optimization)moai-domain-devops(Language deployment patterns)moai-security-api(Language-specific security)moai-domain-database(Database integration patterns)
Changelog
- v4.0.0 (2025-11-13): Complete Enterprise v4.0 rewrite with 40% content reduction, 4-layer Progressive Disclosure structure, Context7 integration, modern language ecosystem analysis, and comprehensive migration strategies
- v2.0.0 (2025-11-11): Complete metadata structure, language selection patterns, ecosystem integration
- v1.0.0 (2025-11-11): Initial programming languages foundation
End of Skill | Updated 2025-11-13
Language Ecosystem
Modern Development Trends
- Polyglot programming becoming standard practice
- Language interoperability through WebAssembly
- AI/ML influencing language evolution and adoption
- Performance optimization driving language innovation
- Cloud-native development shaping language ecosystems
Future Considerations
- WebAssembly enabling cross-language compilation
- AI-generated code impacting language popularity
- Edge computing driving language optimization
- Security concerns influencing language adoption
End of Enterprise Programming Languages Foundation Expert v4.0.0
GitHub Repository
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
